
Colorado Technical University

Addressing Software Volatility in the
System Life Cycle

A Dissertation Submitted To

The Graduate Council In Partial Fulfillment Of
The Requirement For The Degree Of

Doctor of Computer Science

Department of Computer Science

By

Glenn Gerard Butcher

M.S. Florida Institute of Technology, Melbourne, FL, 1985

B.S. Arizona State University, Tempe, AZ, 1980

Colorado Springs, Colorado

September 1997

Addressing Software Volatility in the System Life Cycle

By

Glenn Gerard Butcher

THE DISSERTATION IS APPROVED

Dr. Charles N. Schroeder

Dr. Mary Jane Willshire

Dr. Richard Fairley

__
Date Approved

 i

Abstract

 Software maintenance costs are well-documented as the largest component of

software life cycle cost. While significant research attention has been paid to the

characterization of maintainability, program understanding, and software organization for

maintainability, there is little work published to date on the a priori identification and

encapsulation of a software system’s volatile points. This dissertation proposes a

methodology for identifying the most probable points in software to be developed to

experience the highest frequency of change, and use this postulated information as

guidance in developing tools, organization, and techniques to make these points easy to

change. In order to validate the fundamental behavior of enhancive software volatility, a

volatility-oriented maintenance life cycle cost model is presented to describe the

relationship between frequency, cost-to-change, encapsulation strategies, and the resulting

life cycle cost. The behavior of this model is then correlated against historical change data

from systems of a single domain.

 ii

Acknowledgments

 The success of this dissertation is directly due to the members of my committee,

Drs. Richard Fairley, Mary Jane Willshire, and particularly my chairman, Dr. Charles

Schroeder. Their guidance and suggestions turned this “half-baked” idea into a viable

approach for addressing software volatility.

 A number of people directly contributed their time in facilitating access to the data

essential to accomplishing this study, including Lt. Col. Richard Pope, Maj. Dennis Kaip,

1Lt. Geoff Bednarsky, Sydney Rodriguez, Bob Klotz, James Benavedes, Robert Philp,

and Roy Garcia of the Space and Warning Systems Center, Peterson Air Force Base,

Colorado. The assistance of David Erickson, Joseph Kailey, and Edward Schulz from the

Lockheed-Martin Corporation enabled collection of data for the new Granite Sentry.

 Special thanks go to Nicholas Zvegintzov, who, through his writings and

conversation, provided invaluable insight into the philosophy and process of software

maintenance. He also provided incisive comment on the original research proposal.

 A debt of gratitude is due to the members of Operating Location SG, Air Force

Operational Test and Evaluation Center, Buckley Air National Guard Base, Colorado.

These people are my co-workers, and their patience with me during this test of persistence

will not soon be forgotten.

 I dedicate this effort to Shandra, Eric, and Matthew, hoping it makes even just a

 iii

small difference in the world whose reins they will take.

 But foremost, I owe my personal success in this endeavor to my wife Sherry. You

fully and unwaveringly supported me in this endeavor from beginning to end, and now it is

time for me to return that support. Particularly, for all that I’ve learned here, none of it

matches the importance of these words that you live and have shown me:

 “If I speak in the tongues of men and of angels, but have not love, I am only a

resounding gong or a clanging cymbal. If I have the gift of prophesy and can fathom all

mysteries and all knowledge, and if I have a faith that can move mountains, but have not

love, I am nothing. If I give all I possess to the poor and surrender my body to the

flames, but have not love, I gain nothing.

 Love is patient, love is kind. It does not envy, it does not boast, it is not proud. It

is not rude, it is not self-seeking, it is not easily angered, it keeps no record of wrongs.

Love does not delight in evil but rejoices with the truth. It always protects, always trusts,

always hopes, always perseveres. Love never fails.” [25]

 Thank you, Sherry; I love you...

 iv

Contents

Abstract ..i

Acknowledgments..ii

1 Introduction..1

1.1 Statement of the Problem ...2

1.2 Hypotheses...5

1.3 Assumptions...6

1.4 Conceptual Framework ..7

1.4.1 Definitions ... 10

1.4.2 A Volatility-Oriented Maintenance Life Cycle Cost Model 12

1.4.3 Methodological Model... 15

1.4.3.1 Change Driver Identification.. 16

1.4.3.2 Change Driver Analysis ... 18

1.4.3.3 Change Driver Prioritization.. 19

1.4.3.4 Trade Studies .. 19

1.4.3.5 Selection of Encapsulation Initiatives............................... 20

1.4.3.6 Encapsulation-Oriented Development ... 21

1.5 Research Method ... 21

1.5.1 Volatility Validation... 21

1.5.2 Cost Model Validation... 23

1.6 Summary.. 24

 v

2 Analysis of the Literature... 25

2.1 Motivational Research.. 26

2.2 Previous Research .. 28

2.2.1 Software Volatility... 28

2.2.2 Software Maintenance Cost Modeling.. 33

2.3 Related Research.. 37

2.3.1 Volatility Identification .. 37

2.3.2 Volatility Encapsulation ... 38

3 Research Method.. 41

3.1 The Fundamental Process of Software Maintenance 41

3.2 Description of the Domain..44

3.2.1 Granite Sentry.. 45

3.2.2 Command Center Processing and Display System - Replacement

(CCPDS-R) ... 46

3.2.3 Space Defense Operations Center (SPADOC)................................ 47

3.3 The Data Collection Subject: The Space and Warning Systems Center (SWSC)47

3.4 Method: Establishing The Nature of Volatility.. 48

3.4.1 Change History Data Collection... 49

3.4.2 Change History Data Reduction... 52

3.5 Method: Identifying Cross-System Volatility Correlations............................. 56

3.5.1 Cross-System Volatility Data Collection .. 56

 vi

3.5.2 Cross-System Volatility Data Reduction .. 57

3.6 Method: Asserting the Benefit of Addressing Volatility................................. 61

3.6.1 Cost Comparison Data Collection .. 61

3.6.2 Cost Comparison Data Reduction .. 62

4 Analysis ... 63

4.1 Analysis: Establishing The Nature of Volatility ... 63

4.2 Analysis: Identifying Cross-System Volatility Correlations............................ 64

4.3 Analysis: Asserting the Benefit of Addressing Volatility................................ 69

5 Results and Conclusions... 70

5.1 Summary of Results ... 70

5.2 Conclusions and Further Study... 74

Appendix 1: Volatility Characterization - SPADOC ... 76

Appendix 2: Volatility Characterization - CCPDS-R .. 85

Appendix 3: Volatility Characterization - Granite Sentry 103

Bibliography .. 111

 vii

List of Tables

3.1: Change History Data Dictionary ... 50

3.2: Module Volatility Release Coverage ... 51

3.3: Sample Change Frequency Tabulation... 53

3.4: Summary Volatility Metrics .. 53

3.5: Change Frequency Summary... 55

3.6: Change Driver Release Coverage.. 57

3.7: Change Driver Generic Pairs Example... 58

3.8: Change Category Tabulation... 59

3.9: Change Categorization Correlation ... 59

3.10: Predominant Change Objects .. 60

3.11: Change Object Correlation.. 61

4.1: Change Object Volatility Contribution .. 65

 1

Chapter 1

Introduction

 The maintenance phase of the software life cycle has been amply described as the

crux of the “software crisis” [20]. And when one examines the nature of the effort

devoted to maintenance, it is determined that the majority of that effort is devoted to

changes made to accommodate new or evolving user requirements. It then follows that

initiatives targeted to reducing the cost of maintenance, particularly the cost of

adaptations, would provide more cost reduction per unit of effort spent than efforts

targeted at reducing any other cost. Many cost reducing initiatives proposed in the past

few years have purported to address maintenance costs through better software

organization (object orientation, structured programming), increasing program

understanding, and quantification of attributes such as software size and complexity. But

few have directly addressed the costs of change, or in other words the effort required to

implement specific changes. Particularly, there is very little documented research to date

on the feasibility or effectiveness of predicting change in software yet to be developed.

Countless techniques for encapsulating software change points exist in both research and

practical application, but there exists no methodology to target their application to the

most volatile points of a software system. This dissertation sets out to validate the

 2

concepts of software volatility prediction and encapsulation, opening the door for

specification of processes to support both activities through the software life cycle.

 Two definitions that conceptualize software volatility are given. First, software

volatility is defined as the propensity for software to change over time in response to

evolving requirements. Later in this dissertation, an operational definition for software

volatility will be presented. Software changeability refers to the ease with which a given

software artifact can be changed in response to evolving requirements. The first definition

deals with the situation of change; the second with the response to the situation. Note that

the definitions consider only enhancive changes, per the categorizations of change

presented by Van Horn [30]; corrective volatility, restructuring volatility and, to an extent,

adaptive volatility respond to dynamics outside of the realm of evolving user requirements.

It is the intent of this dissertation to validate the fundamental behavior of software

volatility in order to substantiate the cost-effectiveness of predicting and encapsulating

volatile points in software. The long range goal of this research is to “operationalize”

software volatility by inserting techniques in the software requirements definition and

design processes to make software more malleable - promoting software changeability

targeted toward anticipated requirements volatility.

1.1 Statement of the Problem

 Relatively speaking, all software is “easy” to change. The name “software” implies

a manifestation that is malleable; receptive to modification. The software-based functions

of a system do take much less intellectual and physical effort to change than the hardware

 3

based functions, both in the design and implementation of the change as well as its

promulgation among multiple copies. The architectural concepts presented by John Von

Neumann for stored program computers resulted in a class of machines with flexibility to

handle a much broader range of problems, in ways tailored to individual preferences, than

any other machines introduced previously.

 But, while the physical act of modification is simple, making software have its

intended effect is less so. Programmers usually are too busy getting the program to work

as intended the first time to worry about making the program easy to change later. And,

once a program is put into use, subsequent changes to accommodate changing user needs

may be simple or complex, depending a lot on the nature of the change and how the

implementing analyst and/or programmer constructed the area(s) affected.

 It should be clear that there is great cost-saving potential in any advancement that

encourages the design of software to accommodate change. One rationale to support this

assertion is the same used in code profiling: execution of the program under a code

profiler shows where the program spends its computer cycles - the areas that occupy most

of the execution time become prime targets for optimization. However, most research on

maintainability to date is on its characterization, in the hope that, by showing good and

bad characteristics, maintainability researchers will encourage developers to design and

code more maintainable software. It is for this reason that the term “changeability” is

preferred in order to distance the proactive approach of building in changeability

advocated in this work from the after-the-fact characterization of maintainability.

 4

 Actually, the research collected to date suggests three hierarchical levels that,

combined, serve to characterize a software system’s ability to accommodate volatility.

From lowest in potential to highest, they are:

1. Maintainability: The general aspects of software structure - modularity,

object orientation, coupling, cohesion, etc. - that facilitate all aspects of

maintenance, from defect correction to enhancement.

2. Changeability: Requirements analysis and design undertaken to specifically

accommodate anticipated enhancive change.

3. Domain Engineering: The top-to-bottom design of a software system as a

foundational architecture of components common to the application’s domain,

capped by an integrating layer that allows the use of the components to be tailored

to fit specific applications. This requires specification of an interaction model for

the domain’s components that covers most possible application situations.

While all three of these aspects are important, it is upon the second of these three that this

inquiry will focus: validation of the life-cycle benefit of attempting to predict the most

volatile points in a software system, and encapsulation of these points with mechanisms

that will lower their cost-to-change.

 5

1.2 Hypotheses

 The following hypotheses have been selected as the key indicators of the validity of

incorporating software volatility point prediction and encapsulation techniques into

software development processes:

H1: Distribution of frequency of enhancive change in a system is not uniform.

This hypothesis asserts that a relatively small proportion of a software system experiences

frequent “revisit” to implement enhancive change, validating the benefit of making these

parts as easy to change as economically possible. This assertion parallels the economic

argument for reuse, in that extra effort to encapsulate a change point has the potential for

positive amortization over the reduced unit cost of a large number of anticipated changes

during maintenance.

H2: Within a domain, the most volatile objects of change are common to all systems.

This hypothesis asserts that common forces of enhancive change exert upon all systems of

a domain, validating the effort to use change histories of existing systems to predict

patterns of change in new systems of the same domain.

H3: Effort expended in software development to encapsulate a volatile point reduces

the cost to change the encapsulation object in maintenance.

This hypothesis captures the essential motivation for conducting volatility prediction and

encapsulation - life cycle cost reduction. Its basis is the demonstrated tendency of

 6

volatility to cluster in a relatively small number of modules of a system, which

correspondingly map to a certain few change drivers that occur with frequency greater

than 1 during the maintenance life cycle. If there are no change drivers that occur more

than once in a software system, then expending effort to predict and encapsulate volatile

points would not be worth the effort saved in making changes.

1.3 Assumptions

 The following assumptions serve to focus this inquiry on those aspects of software

volatility that show the most promise in reducing life cycle costs:

1. The effort required to make software changeable will compete with the

effort required to implement the required functionality and performance. Given

that most software development efforts have finite resources, the framework for

incorporating changeability should target the most “volatile” parts of the system.

“Enhancive volatility” is defined with respect to software change as the propensity

for a software system to change over time in response to changing user

requirements. Consequently, “volatile points” are specific places in a software

system that are expected to change during the life cycle. This definition is used in

postulating modifications to the software development process to incorporate

changeability.

2. Every concept of software organization described to date implicitly

supports changeability. Structured programming, encapsulation, abstraction,

objects and their polymorphism and inheritance -- all of these, when practiced to

 7

the letter and intent of their authors, help to reduce the effort required to

implement subsequent changes. Well-organized software is relatively easier to

change. However, the focus of this research will be on application of mechanisms

targeted to facilitating specific changes.

3. The techniques to predict and encapsulate software volatility are

independent of the particular software development methodology used. Indeed,

these techniques should enhance the cost-effectiveness of any methodology by

targeting its design phase(s) toward implementing change mechanisms that cut the

cost of change.

1.4 Conceptual Framework

 There are two fundamental activities required to make a software component

easier to change: 1) identifying the need to make it changeable, and 2) encapsulating the

component in an appropriate change mechanism. The first step is rooted in the

requirements gathering and analysis process, the second in the design and implementation

process. Therefore the focus of incorporating the concept of volatility in the software

development process is on the identification, prioritization, and encapsulation of volatility

points in a software system.

 Identification of volatility points is a lot like identifying risk in software

development: you don’t know if you were right until you get there. Like lottery numbers,

the actual change history of a software system isn’t precisely known until it happens.

 8

Sorting software systems into the following categories provides a rough idea of the

certainty that can be expected in volatility point identification:

1. Existing Systems - Software that is currently in use. It has a history of

change, which is maintained formally or at least in the minds of the maintainers,

that can be captured and analyzed to identify volatility points.

2. Replacement Systems - Software to be developed to replace an existing

system. This software can also make use of the existing system’s change history.

But replacement software may provide functionality that changes the expectations

of its users, consequently altering the enhancive volatility from that expected based

on analysis of the previous system.

3. “Brand-New” Systems - Software to be developed to meet a new need. It

is for these systems that volatility point identification is most problematic.

Approaches could include user interviews to identify anticipated changes in

requirements, and identification of existing systems in the same domain and/or

architectural category whose change histories can be examined for correlations.

 Volatility identification for all three categories of systems is an exercise in

prediction based on prior events. The categories present a continuum of uncertainty based

on decreasing correlation of past experience.

 Using the change histories of existing systems to anticipate volatility of new

systems in the same domain requires a transformation from the system-specific volatile

 9

points to a general specification of the driving requirement. For this reason, the objective

of existing system volatility analysis must be the identification of change drivers, which

are descriptions of the user requirement driving the enhancive modification. Change

drivers should generically describe the data and/or behavior to be changed in the system.

Generic specification should allow change drivers to be applied to software systems across

the target domain.

 Prioritization of change drivers must account for a number of factors that will

influence the selection of the most cost-effective volatility points to encapsulate with

appropriate change mechanisms. This prioritization must take into account the frequency

of anticipated change, along with the criticality of the change, the required response time,

and identification of volatile points that are affected by more than one change driver.

Prioritization should support the encapsulation of the volatile points that result in the

biggest positive impact to the system’s life cycle cost, given that we can’t afford to inflict

the same level of treatment to all identified change drivers.

 All of the means available to encapsulate volatile points must be understood in

terms of their “bang for the buck” -- how much they cost relative to their potential benefit.

This knowledge is essential to match prioritized volatility points with appropriate

encapsulation mechanisms. Other factors influence this pairing, such as the nature of the

operational environment, required responsiveness, and configuration management

constraints, but cost-benefit is the overriding consideration.

 10

 It must be recognized that a given volatile point will have multiple encapsulation

alternatives, and the selection of a volatile point for encapsulation may well depend on

identifying a cost-palatable mechanism. Therefore, the software implementation process

must include an activity to identify all appropriate encapsulation mechanisms for each

candidate volatility point so that cost-benefit tradeoff decisions can be made with full

knowledge.

1.4.1 Definitions

 Prior to presenting the methodological and cost models, it is necessary to propose

operational definitions of key terms and concepts:

1. Software Volatility: generically defined to be the ratio of system elements

changed to the total number of system elements for a given period of time.

Software volatility is expressed as a percentage. This definition can be instantiated

in a number of ways:

a. with respect to the foundational metric of “system element.” This

element can be lines of code or number of modules. Modules could be

further discriminated into categories, i.e. data vs. code.

b. with respect to the time period. Volatility can be calculated for a

release, or for a time interval, or for a life cycle, depending on the

comparative analysis to be conducted.

 11

c. with respect to change type. The standard enhancive, adaptive,

corrective, and perfective categories can be used. This dissertation will

make particular use of characterization of enhancive volatility.

This measure of software volatility meets the definition of a ratio scale in that its

values express an interval relationship and the scale has a proper zero value, 0/total

elements = no volatility.

2. Volatility Topology: This is the characterization of historical volatility for a

specific system, expressed using Pareto analysis of module change frequency for a

specific time interval.

3. Volatility Exposure: In the manner of risk exposure per Boehm [9],

volatility exposure is a combinatorial measure whose components are frequency of

change and cost to change for a given change driver. Both components represent

the key considerations in encapsulating a volatile point in a software system, and

their product provides a value for prioritization in the methodological model.

4. Volatile Point: A place in software where change occurs. At this time, its

locality can be as broad as a module or as specific as a single identifier. Its primary

purpose is for identification of encapsulation candidates.

5. Change Driver: A requirement that changes, thus stimulating software

volatility. A change driver is identified by performing a “bottom up” analysis of

historical change, identifying the most frequently changed modules and

 12

determining the requirements that drive their change. Given the differences in

specific systems, volatility analysis must produce change drivers in order to

provide relevant information that is comparable across systems of a domain. This

dissertation particularly concentrates on enhancive change drivers, those that are

rooted in changed user expectations.

6. Encapsulation: More widely recognized as an attribute of object

orientation, in this dissertation encapsulation refers to the specific act of

constructing a change mechanism around a volatile point to reduce the cost of

making a change. Encapsulation can take any manner of form, to include

parameterization, interactive tools, and documentation, either singly or in

combinations.

 The following sections describe the two models of software volatility used in this

dissertation. The cost model describes the enhancive software maintenance life cycle from

the perspective of software volatility, parameterizing the key volatility attribute of change

frequency in its role in driving life cycle cost. The methodological model proposes a

process for addressing software volatility in the development phase of the software life

cycle based on change frequency. Validation of the cost model will in turn validate the

utility of the methodological model in lowering life cycle cost.

1.4.2 A Volatility-Oriented Enhancive Maintenance Life Cycle Cost Model

 A parametric cost model captures the fundamental behavior of a given effort

environment and allows the application of cost drivers with known behavior to influence

 13

the fundamental behavior. Development of a volatility-oriented cost model for enhancive

software maintenance was undertaken to provide a formal vehicle for describing volatility

behavior and to support the proposed process for volatility analysis and encapsulation.

This model has no mechanisms for calibration, and is thus not intended for use in

estimating costs of actual enhancive maintenance programs. The cost model consists of

two equations described below.

 1. Life cycle cost of a single enhancive change driver (SM∆LCD): This equation

takes the cost to perform a single change and extends it through the maintenance life cycle

based on anticipated frequency and postulated frequency behavior. This equation is used

to represent the life cycle cost of an identified change driver, a recurring requirement for

change:

 ()SM SM FLCD C i
i

y

∆ ∆= ⋅
=

�

1

 (Eq. 1)

Where:

 SM∆C = Cost to inflict an instance of the change driver;

 F = Change Frequency;

 y = Life Cycle in Years.

 14

 2. Enhancive Maintenance Life Cycle cost (SMMLC): This equation relies on the

identification and prioritization of change drivers for the system to be developed. The

change drivers are then each modeled using equation 1, and the results summed in

equation 2 as follows:

()

SM

SM

pMLC

LCD j
j

mp

= =

�
∆

1 (Eq. 2)

 Where:

 p = Overall percentage of effort to be incorporated in the

 significant change drivers expressed by m.

 mp = Number of significant change drivers for a given percentage

 of effort p.

The determination of m is a central question of this dissertation. m characterizes the

tendency of volatility to cluster in a few change drivers; in other words, a certain few

changes are made regularly. Specifically m in the model is the number of “significant”

change drivers of the domain. The first research objective, characterization of software

volatility, has as its central question, “How many change drivers are significant?”

Expressed in percentages, a Pareto analysis of change drivers rank-ordered by frequency

describes the relationship, “A% of the change drivers are responsible for B% of the total

change effort.” The assertion of this dissertation is that a statistically significant A%-B%

relationship can be identified for all software supporting a given domain, and that

 15

significant values of m can be reliably specified for each domain at a user-specified

percentage of maintenance effort.

1.4.3 Methodological Model

 The specific activities undertaken in software development to address adaptive

volatility should produce a system with lower maintenance costs, owing to the system’s

built-in flexibility. Toward this end, the following methodology is proposed to target

development resources toward encapsulating the volatile points with the most “bang for

the buck:” those that result in the greatest maintenance cost savings. This model is not

dependent on any particular development methodology; instead its steps relate to the

canonical activities of requirements discovery, design, and implementation, present in

some form in all development methodologies. Each sequential activity is listed below and

described in detail in subsequent sections:

1. Identification of all anticipated change drivers. This activity would rely

primarily on the demonstrated volatility of existing systems, obtained from analysis

of release histories and user interviews.

2. Analysis of each change driver to assess its volatility exposure in terms of

its frequency of occurrence and magnitude of effort.

3. Prioritization of the change drivers by their anticipated volatility exposure.

 16

4. Input of the subset of change drivers that are anticipated to account for the

bulk of adaptive change into a volatility oriented cost model to produce trade

studies of encapsulation alternatives in terms of their relative cost-benefit.

5. From the model-based analysis, development of a prioritized list of

encapsulations for pursuit in system design and development

6. System developers implement as many of the encapsulations, from the top

of the list to the bottom, as the available resources will permit.

1.4.3.1 Change Driver Identification

 This is the most problematic aspect of addressing software volatility, for the

essential act is one of predicting future events. The only information that provides any

chance of supporting reliable predictions of software volatility is the history of change in

similar systems serving similar customers. Within this continuum, the best circumstance is

the identification of volatile points within an existing system for attention with perfective

maintenance; the next-best circumstance is developing the replacement of a system with a

well-established change history and a stable customer base. The first circumstance

provides the most risk-free environment for volatility identification, followed closely by

the second. The element of risk added in the second circumstance comes primarily from

the change in customer expectations with the introduction of a new tool for doing their

business. This element of risk rises as the opportunity to study change histories of similar

systems decreases, as suggested by the categories proposed previously in this section. The

concept of domain serves the task of identifying similar systems quite well, with the

 17

expectation that systems serving in the same application domain will suffer similar

pressures of change. However, assuming that systems serving the same domain have

similar volatility topologies is overly simplistic, considering that the same customers may

have different evolution requirements for each system. So, any effort to predict software

volatility should address both historical change and the specific expectations of the

customer base.

 The analysis of historical change in a system establishes its volatility topology.

This topology expresses a number of characteristics of the system’s change history, to

include the frequency of releases and a Pareto analysis of change frequency by module.

Successful determination of a volatility topology assumes the existence of release

documentation that identifies when the release occurred, what change requests the release

satisfied, and the modules “touched” to satisfy each change request.

 The volatility topology is then used to identify the system attributes subjected to

change. These attributes will have names such as “system users,” “withholding rules,” or

“map displays” identifying data or behavior subject to change. This attribute identification

is accomplished by performing semantic analysis of the titles and descriptions of the

change requests that drove change of the volatile modules. Also identified in this step are

the types of changes the attributes undergo, such as “delete,” “add,” “update,” or “move.”

The combination of the attribute with the types of changes inflicted comprises a change

driver for the system.

 18

1.4.3.2 Change Driver Analysis

 The intent of this step in the model is to identify the volatility exposure of the

system to the change drivers identified in the previous step. The concept of exposure is

similar to the one defined for risk analysis by Boehm [9]. The two components that

contribute to volatility exposure are the frequency of occurrence and the cost to

accomplish the change. The list of change drivers identified in the previous step of the

methodological model carry frequency information established in the process of

developing the volatility topology. However, establishing the cost to perform a change

can be difficult in light of the sparse efforts to collect such data among maintenance

organizations. In the absence of historical cost data, the number of modules “touched” to

effect a change driver can serve as a coarse indicator of effort required.

 Calculation of a single-valued exposure measure in the manner of risk exposure

(RE):

 RE = P(UO) x L(UO) [9]

 Where:

 UO - Undesirable outcome;

 P - Probability of occurrence;

 L - Magnitude of loss if risk occurs.

 19

suffers from ambiguity of relative magnitude between two close values. It is proposed

that volatility exposure be presented as an ordered pair (f,c) where f = frequency of

change and c = the cost to implement the change.

1.4.3.3 Change Driver Prioritization

 Rank-ordering of the identified change drivers is essential to ensuring that

attention is applied in development to the software components most likely to change.

The volatility exposures identified in the previous step form an important starting point in

this effort, but the actual ordering is best established in a review process that involves the

system engineers, project managers, and customer representatives. A number of outcomes

besides a rank-ordered list come from such a process. First, the identified change drivers

undergo a “sanity check” from review in the context of relative importance by the

participants. Second, the participants develop an ownership in the list and its intended

purpose of directing encapsulation of likely volatile points in the system to be developed.

 The prioritized list deserves capture and control as a configuration item so that

subsequent changes are effected only after a directed and documented process involving

exposure reassessment and review by the original list participants.

1.4.3.4 Trade Studies

 This step coincides with design activities in the software development

methodology. The first activity in this step is to determine how many change drivers will

be addressed with encapsulation mechanisms, m in the cost model (Eq. 2). While the

 20

ultimate determination of effort to be devoted to encapsulation will be based on the

resources available, this determination should also depend on how many change drivers

account for most of the anticipated change.

 The second activity is the development of encapsulation alternatives for each

change driver. Intuitively, a tradeoff between the cost to develop the alternative versus

the cost savings as a function of cost to make a single change times the anticipated

frequency is the prime concern; however, characterization of this tradeoff is beyond the

scope of this dissertation.

1.4.3.5 Selection of Encapsulation Initiatives

 In this step, the population of identified encapsulation alternatives is considered for

implementation. This is proposed as another review process conducted with the same

participants as the change driver prioritization. Multiple encapsulation alternatives for

each change driver are to be considered, both among themselves and in their relation to

the alternatives for the other change drivers. It is in this review that synergistic

relationships between encapsulation alternatives can be identified and consideration given

to their combination into single mechanisms. Alternatives involving data parameterization

are probably the most amenable to combination under one change mechanism. Also, the

resources available for encapsulation efforts are to be considered. The product of this

activity is a list of volatility encapsulation initiatives to be incorporated into the software

development effort, rank-ordered in priority of cost-benefit based on the preceding

volatility analysis

 21

1.4.3.6 Encapsulation-Oriented Development

 In this step, volatility encapsulation mechanisms are developed hand-in-hand with

the functional core of the software system, in the priority order specified in the previous

step.

1.5 Research Method

 This research pursued two main objectives: 1) validation of the fundamental

behavior of software volatility, and 2) validation of the fundamental relationships

described by the volatility-oriented maintenance life cycle cost model. The domain of

integrated tactical warning/attack assessment correlation systems supporting aerospace

defense of the North American continent was chosen as the universe of discourse for these

two inquiries. Each inquiry objective was to be met using software change data collected

from the maintenance efforts of each system in the target domain. For the two objectives,

if the objective could not be met in the target domain, then it was to be concluded that the

postulations of the objective could not be universally applied across all domains. The

research conducted in support of this dissertation was considered to be complete when

sufficient data to support assessment of the proof criteria specified below was collected

from the subject domain. Each of the two inquiries is described in the following sections.

1.5.1 Volatility Validation

 One of the fundamental objectives of this inquiry was to validate the propensity of

adaptive software change to cluster in a relatively small percentage of the code. Without

 22

evidence of this elemental tendency, performing volatility prediction and encapsulation

would not be worth the effort. In the cost model (Eq. 2), this parameter is captured by m,

the number of significant change drivers. The supporting research methodology

proscribed collection of software release data from the following systems in the universe

of discourse:

1. Command and Control Processing and Display System (CCPDS) and its

replacement (CCPDS-R);

2. Space Defense Operations Center (SPADOC);

3. Granite Sentry, both the Phase III system and its replacement.

This data was used to establish each system’s volatility topology, in the manner described

in the methodological model. From the volatility topology, each system’s change drivers

were identified and prioritized, again according to the methodological model. Then, for

this inquiry, correlation between the lists was established, both with regard to the presence

of common change drivers and their historical frequency of occurrence.

 The objective of this inquiry was to show that volatility does cluster in certain

modules, both as a function of frequency in a single system and as a correlation of high-

volatility change drivers among systems of the same domain. The parameter m was also

defined for the subject domain, the number of change drivers significant to enhancive

maintenance in integrated tactical warning and attack assessment correlation systems.

 23

Proof Criterion 1: Given D = the subject domain, S = a given system, nf = the

number of modules experiencing frequency of impact f: For

D(S), nf > nf+1.

(For a given system of the subject domain, the number of modules

experiencing a given change frequency is greater than the number of

modules experiencing the next higher change frequency.)

Proof Criterion 2: Given D = the subject domain, Sn = a given system, and COLSn =

Change Object List of system Sn: For all D(Sx, Sy), rs (COLSx,

COLSy) is significant at 99%.

(For all combinations of Sx and Sy of the subject domain, the

coefficient of correlation of the systems’ change object lists is

significant at 99%.)

1.5.2 Cost Model Validation

 The objective of this inquiry was to validate the fundamental behavior of the

volatility-oriented maintenance life cycle model by testing the hypothesis. The hypothesis

was tested by comparing projected maintenance life cycle costs of both the operational

and final Granite Sentry systems. The following criterion was established:

Proof Criterion 3: Given ∆∆∆∆SD = Change Cost in Staff-Days: ∆∆∆∆SDGSold - ∆∆∆∆SDGSnew is

influenced by volatility encapsulation.

(The difference in the cost to change the old Granite Sentry from the

 24

cost to change the new Granite Sentry is influenced by volatility

encapsulation)

1.6 Summary

 This chapter presented an overview of the concept of software volatility, to include

three hypotheses that direct the research, a conceptual framework for software volatility

that includes both cost and methodological models, and a research method designed to

support validation of the three hypotheses. Chapter 2 presents an analysis of the relevant

literature that forms the basis for the concept of software volatility, Chapter 3 outlines the

prosecution of the research method, Chapter 4 presents the analysis of the research, and

Chapter 5 asserts the outcomes of validating the hypotheses and presents both

recommendations for incorporating the methodological model in software processes and

directions for further research.

 25

Chapter 2

Analysis of the Literature

 In this chapter, the following areas are discoursed with the intent of establishing

the foundation for the research presented herein: 1) motivational research, 2) previous

direct research, both with regard to software volatility as defined in Chapter 1 and

software maintenance cost modeling, and 3) related research with regard to software

volatility prediction and encapsulation.

 Central to the discussion of any aspect software maintenance is the definition of

categories of changes conducted during maintenance. Originally, Swanson [29] proposed

the categories of corrective (response to failures), adaptive (changes in data or processing

environments) and perfective (increasing efficiency, performance, or maintainability).

Lientz and Swanson later surveyed 120 organizations and reported a significant

subcategory within perfective maintenance, enhancements (user demands for

enhancements and extensions) [22]. Van Horn, in [30], offers a concise definition of

enhancement: “modification to meet new or unrecognized user requirements.” These four

categories of maintenance serve as the basis for discovery in this study, with prime

attention paid to enhancements.

 26

2.1 Motivational Research

 In order to understand the need to address evolvabilty of software, it is necessary

to visit the foundational research into its nature. The basic need for addressing the cost of

maintenance has been presented many times, supported primarily by the proportion of

software activity devoted to maintenance. This percentage has been measured at

anywhere from 50% to 80%. Further, the proportion of effort devoted to enhancements

has been variously measured and surveyed in the range of 39% to 59% (see Dekleva and

Zvegintzov [12] or Hops and Sherif [19] for compendia of studies), always the largest

proportion in any of the reports. It should be clear that attempts to reduce the cost of

enhancive changes to software are targeted at the category of changes with the most

potential for cost savings.

 Belady and Lehman [6] first described a sub-discipline they named, “program

evolution dynamics” in 1974, proposing three laws of evolutionary behavior based on

statistical analysis of releases of the IBM OS/360 operating system. The first rule sums up

the elemental state of software volatility as follows: “A system that is used undergoes

continuing change until it is judged more cost effective to freeze and recreate it.” Parnas

published a paper in 1979 [24] where he clearly defined the circumstances that call for

“design for change.” It was intuitively obvious to these researchers early in the evolution

of software development into “programming in the large” that anticipated change should

be a key motivator in requirements analysis

 27

 Van Horn, in [30], calls for “evolvability as a design criterion,” and the

“(preservation of) evolvability during evolution.” However, he then asserts that

preserving evolvability is to be done through periodic restructuring of software. He then

implies that, “we need not be so concerned with having the best structure when the

software is created. Any flaws in structure can be healed as the software evolves.” This

thinking runs counter to the use of program structure as a tool of evolvability, presented in

Section 2.2.

 The need for software evolvability has also surfaced in management and policy

circles. Horowitz [20] provides examples (mainly from DoD) that illustrate the benefit of

timeliness’ independence from cost, the increasing cost of maintenance in the later years of

the life cycle, and the importance of specifying and adhering to a structured architecture in

the subsequent incorporation of major system changes, such as porting to new machines

and upgrading system services. He also points out the tendency for software developers

to spend much effort on implementing a customer’s functional and performance

requirements as understood at the time, with little concern with how they will change

during the life cycle. Most telling is his cite of an unnamed survey that asked 123

businesses what they thought were the government’s most important concerns when

awarding software contracts - ease of maintenance and maintenance cost ranked 8th and

9th out of 10. His statement: “The basic problem is the lack of a strong requirement for

modifiability that facilitates software maintenance.” However, the basic need for

changeability engineering is well-recognized by DoD software managers, substantiated in

the recommendations of the Software Logistics Workshop [26] which refers to

 28

“quantify(ing) the propensity for change in weapon system(s),” “(developing) a model for

determining the optimum level of maintenance at which software changes should occur.”

Horowitz [20] provides a concise summation of the problem: “Software does provide

flexibility, but it must be designed from the start with an architecture that allows it to do

so.”

2.2 Previous Research

 This section presents the foundational research for this dissertation. Both the

process model and the cost model are substantiated by significant prior work.

2.2.1 Software Volatility

 The first significant discussion of software volatility was presented by Belady and

Lehman in [6]. They called it “complexity” and defined it as, “the fraction of the released

system modules that were handled during the course of the release.” Their notion of

volatility forms the basis for the operational definition described in the previous chapter.

 A few researchers have pondered the phenomenon of volatility in software, and

have proposed methods to deal with it directly related to the models presented herein.

Land [21] provided the following fundamental concepts:

1. Uncertainty of potential software changes grows greater the further in time

volatility point prediction is attempted, to the point where a cost-feasible design

cannot be conceived to meet the range of expected changes. This future time is

called the forecasting horizon.

 29

2. Limitations in tools and techniques prevent development of systems with

infinite flexibility.

3. “It is generally cheaper to build a dedicated, highly specific than a

generalised, flexible one.”

4. However, the cost of a flexible package may be cheaper if its cost can be

distributed among multiple customers.

Land’s concepts provide important constraints to expectations of volatility analysis and

encapsulation, particularly with regard to the forecasting horizon. It should be evident

that this horizon will be shorter than most software life cycles, and that a certain amount

of volatility cannot be anticipated.

 Land provides guidelines for designing systems that meet changing user needs, to

include:

1. Use analysis, design and evaluation techniques that involve user

participation to achieve as accurate a model of the real world as possible.

2. Use design methods which incorporate experimentation and prototyping.

3. Attempt to distinguish between the stable and volatile aspects of the

system.

4. Avoid early commitment to a particular design.

5. Adopt designs that can cope with a range of possible futures.

 30

6. Use future analysis to craft viable predictions. Land offers a methodology

for future analysis as an appendix to his paper.

7. Build flexibility into the system.

8. Use new hardware and software technology to develop small systems that

are easily replaced.

 Land’s treatise provides an excellent bounding of the scope of the problem, that of

dealing with a system’s ability to meet multiple possible futures. His particular emphasis

on user involvement can help to address volatility, but the onus is still on developers to

present volatility as a concern to involved users if their feedback in that area is expected.

 Podger [27], “postulates that any system can be divided into:

1. An inner zone of basic values and principles, which it would take a

revolution to change.

2. An intermediate zone of general procedures which are subject to change

but where the lead time between the change being formulated and required is quite

long.

3. An outer zone of specific procedures, subject to more rapid and frequent

change.” (from Land [21])

 31

 Podger’s topology implies a continuum of volatility requirements based on the

needed response for a change. This response time continuum forms a component for

determining the prioritization of change drivers.

 However, it is with Hager [16, 17] and Bækgaard [5] that the fundamental

precedent research in software volatility is presented. Both describe specifically a

methodology of volatility analysis that is fundamentally composed of an identification

activity and a prioritization activity. Hager proposes encapsulating volatility with program

structure incorporating information hiding and abstraction per Parnas, while Bækgaard

advocates a combination of program structure and parameterization. Bækgaard also

offers the following questions to drive volatility analysis:

 1. Which system properties are likely to change?

 2. Who should be enabled to make the changes?

 3. How are volatile properties to be bound to the software to facilitate change?

The second question implies an important demarcation in determining the manner of

addressing a volatile component of a system: that of deciding whether a particular change

mechanism is to be manipulated by programmers or system users. At this demarcation,

the cost to effect a given change will drop significantly when responsibility is migrated

from the hands of the programmers and their maintenance process to the users.

Correspondingly, the implementation of a change mechanism usable by system users will

cost more than a change mechanism targeted to the maintenance process. This

 32

dissertation proposes to extend their conceptual definitions to a practical, results-oriented

methodology suitable for incorporation into any software development endeavor.

 A few “real world” software development efforts have attempted to directly

address software volatility and the need to predict where software changes will occur in

maintenance. Hager, in [16, 17], illustrated the previously described concept of hiding

volatile system properties to promote changeability. Floyd [14] describes the efforts of

the F-22 Advanced Technology Fighter (ATF) contractor, Lockheed-Martin Corp., in the

identification of historical volatility trends in other software-dependent fighter aircraft for

use as a guide in the design of F-22 flight software. Floyd, et. al., determined that, at the

Computer Software Configuration Item (CSCI) level, the information required to

effectively target change mechanisms was the probability of change, the size of the change,

and the category of the change (Corrective, Enhancive, or Adaptive). They also presented

survey results from software design leads on the F-16 C/D program on the “predictive

volatility” of the various software components of this highly volatile program (many

different software versions to support changing missions, foreign military sales, etc.). A

more direct experience with software volatility is the Granite Sentry program, one of six

hardware/software upgrade programs that comprise the Cheyenne Mountain Upgrade, a

$1.6 billion overhaul of the missile, air, and space warning data correlation systems of

North American Aerospace Defense Command (NORAD) and United States Space

Command. This multi-phased program used the change experience from over 20 years of

software releases to the operational warning systems in Cheyenne Mountain, plus their

own experience with three previous phases of Granite Sentry development, to attempt a

 33

prediction and encapsulation of volatility points in the final system, to be delivered for

operational use in the latter part of 1996. The experiences of these programs provide

valuable insight toward the development of volatility prediction and encapsulation

methodologies and the need for a concise methodology that can be easily and consistently

applied during the event of software development. The Granite Sentry program was

chosen to contribute to the data collected to support this dissertation.

2.2.2 Software Maintenance Cost Modeling

 Parametric cost estimation provides an unambiguous venue for the presentation of

cost relationships. Mathematically, parametric models are sets of processes where system

characteristics are mapped to appropriate ranges of cost [11]. Application of parametric

models to software development rides a significant body of research, most of it intended

to provide cost estimation tools for software development practitioners. However, the

number of non-linear influences of software development keep it from being parametrically

modeled without use of post-model modifiers. Still, the discipline offers a concise method

for describing cost relationships for use in process model validation, the intent of this

dissertation.

 To date, only a few extremely fundamental cost relationships are presently

understood with regard to software. The two most widely recognized cost relationships,

as evidenced in their application in a large number of cost models, is the linear relationship

between software size and the effort to produce it, and the distribution of effort over

development phases based on the Rayleigh model. Despite their coarseness, these two

 34

relationships provide a foundation upon which the variability of software cost estimation

can be baselined. Probably the most significant influence upon estimation variability is that

of the subject domain, as evidenced in its visibility in the modifiers and structure of most

cost estimation models. Most manifestations of domain in cost models are in the form of

“complexity,” with the continuum of scale ranging from information system applications

“to” real-time and embedded applications. COCOMO’s “mode” [8] is the most well-

known manifestation, with contributing attributes of organizational understanding,

experience with related systems, conformance with pre-established requirements and

interface specifications, concurrent hardware and procedure development, need for

innovation, and product size contributing to the selection of effort and schedule equations.

Note that identification of these attributes is essential to proper application of COCOMO’s

mode, for there is no universally accepted definition of complexity. One of the

fundamental assertions of this dissertation is that identification of domain is essential for

the categorization of software volatility.

 The effort to define cost relationships related to software maintenance is long-

running. However, most efforts to develop maintenance life-cycle cost models have not

reached a level of granularity below the software release, and few are supported with

validation based on actual project costs. This previous research does provide valuable

insight into the primary influences of maintenance cost for use in developing a change-

level, volatility-oriented cost model.

 Holchin [18] provides a summary of the primary maintenance cost estimating

relationships (CERs) described in the literature. The most granular of these is the

 35

maintenance/development effort ratio, which describes maintenance life-cycle cost as a

percentage of the overall life cycle cost. Boehm [8] describes this relationship as follows:

 ()E M D EM D= /

 Where:

 M/D = The maintenance/development ratio;

 ED = The effort required for development;

 EM = The effort required for maintenance.

 The maintenance/development ratio is applied to the effort required for

development to obtain the life-cycle effort required for maintenance. Holchin relates

estimates for the proportion of life-cycle cost devoted to maintenance from 40% to 82%,

which is consistent with other observations in the literature. From this variability, it

should be apparent that this relationship serves no practical purpose in describing

maintenance cost behavior and should serve only as a rough indicator of the magnitude of

the problem.

 Holchin also describes a level-of-effort relationship based on programmer

productivity in thousands of source instructions per programmer and provides one

observation of maintenance coverage related to real-time and aerospace software - 8K -

10K SLOC per programmer per month. This relationship’s significant qualifier, like that

of most software cost estimation relationships, is dependent on the subject domain.

 36

 But probably the most well-recognized maintenance cost attribute in the published

models is that of annual change traffic. Usually expressed as a percentage of code

changed in a year, this attribute is a direct application of the operational definition of

software volatility in costing maintenance effort. It must be recognized that this attribute

is dependent on software size as a scaling factor. Widespread use of this volatility-

oriented attribute is evidenced in an excellent comparison of the life cycle support

capabilities of the most well-known software cost modeling tools by Ferens [13].

 Probably the most well-known maintenance cost model was described by Boehm

[8] as part of COCOMO:

 ()()()MM MM ACT PA Nom M=

Where MMA is the annual man-months, MMNom is the man-month estimate from the

nominal intermediate equation, ACT is the annual change traffic (the fraction of the code

changed per year), and PM is the product of maintenance multipliers. This model

recognizes the fundamental contribution of volatility to maintenance life-cycle cost as

ACT. It is interesting to note that the current proposal for COCOMO 2.0 [1] abrogates

both volatility and the life cycle cost approach by addressing maintenance as reuse.

REVIC [3] is an automated version of COCOMO that uses new project data to calibrate

the original COCOMO equations and provides additional risk and phase distribution data;

it takes the COCOMO maintenance equation and allocates annual cost to a fifteen-year life

cycle. It also accelerates annual cost in the first three years to account for resolution of

 37

residual errors from development. For both COCOMO and REVIC, no validation is

presented of the behaviors of volatility or residual errors using actual project data.

 It should be clear from this review of the state of cost estimation that there is a

need to carry software maintenance cost estimation to a more detailed level, and to

validate the resulting model with actual project results. This dissertation proposes a new

level of granularity based on software volatility.

2.3 Related Research

 In this section is presented research that, while not directly related to the topic of

software volatility, contributes perspective, definitions and techniques.

2.3.1 Volatility Identification

 While the methodological model proposed herein for addressing software volatility

has its roots in the methods specified by Hager [16] and Bækgaard [5], many of its

specifics come from the techniques of risk analysis. Boehm in [9] provides a concise

overview. Use of the risk process model as the basis for the volatility analysis

methodological model provides a well-understood process framework that captures the

need to prioritize volatility encapsulation alternatives among themselves. This allows

project resources “robbed” from implementing functionality and performance requirements

to be directed where they will do the most good and gives volatility encapsulation the best

chance to survive in software design and implementation.

 38

2.3.2 Volatility Encapsulation

 The research to date that directly addresses the engineering of software

changeability has mostly focused on generic attributes of modifiability without regard to

their cost tradeoffs. One publication, [4], taxonomizes the generally understood attributes

that make software more maintainable, but it does not address the specific process of

making software more changeable. Another study, [10], specifies software quality factors

in three categories: performance, design, and adaptation. The adaptation category

contains the following factors: expandability, flexibility, interoperability, portability, and

reusability. Of note is their chart that describes positive and negative interrelationships

between the factors in all three categories. In particular, the chart shows the negative

effect of increases in both expandability and flexibility on virtually every performance

factor, which emphasizes the need to prioritize changeability requirements in order to

properly trade them off against performance. The methodological model provides two

places where such prioritization is undertaken.

 Parnas, in [24], provides a key distinction in encapsulation, that between software

generality and software flexibility. He defines generality as the ability for software to

“...be used without change in a variety of situations,” and flexibility as the ability for

software to be “...easily changed to be used in a variety of situations.” Parnas’ issue

between the two was the “run-time cost to be paid for generality” vs. “the design-time

cost to build flexibility.” It should be recognized that the fundamental difference between

generality and flexibility is where lies the responsibility for adapting the software, in the

users or the developers. Parnas further stated that, “the decision (between generality and

 39

flexibility) should be a conscious one.” Volatility analysis provides the context in which to

make these decisions, based on anticipated frequency of change and the cost to change.

 The research topology on the role of software tools in supporting change is

comparable to that for compiler optimization: many good ideas, no unifying theme. In

some cases the purpose of a given tool has nothing to do with its eventual use as a change

mechanism; data base management systems, for example, play a significant role as a

repository for configuration and behavior parameters in some software systems. Martin

[23] provides extensive discussion on design techniques to facilitate maintenance, to

include source code organization and structuring and use of data base management

systems and fourth generation languages; however, he does not discuss the process of

predicting and encapsulating volatility. A software construction technique called

“parameterized programming” espoused the encapsulation of software parameters deemed

likely to change in various mechanisms to facilitate ease of change. Goguen provides a

complete treatment of parameterized programming in [15] , calling for language facilities

to support the parameterization of both data and algorithms. Experience revealed that

parameterization did not necessarily make changing the software less complex [28], and

that the effort spent encapsulating every software parameter easily surpassed the marginal

cost-benefit of changeability [7]. It should be clear that volatility analysis would serve to

focus the application of parameterization and other encapsulation techniques to the places

where they would produce the greatest benefit for the cost.

 In summary, volatility-oriented methodological and cost models offer a unified

process for comprehensively addressing the concerns and concepts identified in the

 40

preceding research. The need for such a framework has been clearly and repeatedly

stated, and the models provided herein offer a practical application of the preceding

research for use by software practitioners to identify and prioritize encapsulation

mechanisms in terms of their benefit versus cost. Additionally, the research conducted to

validate the hypothesis forms the framework for establishing the volatility topologies of

other domains in subsequent research.

 41

Chapter 3

Research Method

 The research conducted to support the hypotheses consists of two components: 1)

validation of the fundamental behavior of enhancive volatility, and 2) confirmation of the

positive cost-benefit relationship of enhancive volatility encapsulation and maintenance

cost. These two components were supported by an analysis of historical change within a

chosen domain to determine volatility topology and common change drivers, and then a

cost-benefit analysis of a rudimentary volatility identification and encapsulation effort

conducted by one of the programs within the chosen domain, respectively. The

subsequent sections describe the grounding concept of software maintenance, the target

domain for this study, the data collection process, and the manipulation methodologies

used to yield relevant information for analysis.

3.1 The Fundamental Process of Software Maintenance

 In order to provide a framework for the data collection and analysis undertaken in

this dissertation, the software maintenance process is described in this section. This

description is essential to understanding the implications of the correlations asserted in this

inquiry.

 The on-going act of software maintenance involves the identification of the need

for changes to software in use, and the controlled infliction of these changes. This

 42

identification can and usually does occur at almost any time during the maintenance life

cycle, but the corresponding infliction is usually accomplished in groups at planned

intervals. The delivery for operational use of software in which a set of identified changes

has been incorporated is commonly known as a release. While there are instances of

software maintenance life cycles where identified changes are inflicted dynamically without

grouping, it was important to select a subject domain for this inquiry where regularly

scheduled releases were implemented. Regular releases provide a data collection point

around which to establish frequency of occurrence, the essential characteristic of software

volatility.

 An identified need for software change will ultimately result in the modification of

one or more of the software system’s constituent objects. The nature of this modification

is important, for it results in a new system that is somehow different. Most discussions of

software modification are content to deal with the software states, that is, the before- and

after-entities surrounding the act of change. But the word “modification” is a verb,

implying activity that has characteristics of interest in this inquiry. The range of activity

involving modification can be completely described in terms of software size by the acts of

addition, change, and deletion. That is, the possible range of activities available to a

software maintainer are to add new code to the software, change code already in the

software, or delete existing code from the software. It may be argued that change of code

is elementally the deletion of code followed by its replacement with new, similar code.

However, inspection of change histories of software reveals the significance of change as a

distinct category. In fact, a significant sub-categorization of changes becomes apparent:

 43

1) appending new instances of previously existing objects, 2) alteration of existing

instances of objects, and 3) deletion of instances of objects. There are significant

differences in magnitude of effort and impact to the software between the addition of a

new map display to a library of map displays and the incorporation of the capability to

display maps where none previously existed. So, for the purpose of describing the nature

of an individual volatile act, the following verbs will be used through the rest of this

document:

1. add: incorporate a new capability that did not exist before.

2. append: incorporate a new instance of a previously existing capability.

3. alter: modify an existing instance of a capability.

4. delete: take out an instance of a capability; the fundamental capability, and

perhaps other instances, remain.

5. remove: take out all aspects of a capability.

 At the beginning of this inquiry, it was determined that establishing the frequency

of change of the constituent objects would be the basis for subsequently determining the

existence of regularly occurring change drivers. The reason for this determination was

that software objects such as modules are unambiguously identifiable due to the need for

development tools to recognize them. Therefore, the “module” was chosen as the entity

for identification of change points. In the systems of the subject domain, various types of

modules were identified, containing such objects as code, data, and, configuration

 44

information. For this inquiry, no attempt was made to establish meaningful correlations

based on module type, although this effort will have significance in subsequent research on

volatility encapsulation. The maintenance processes for the systems of the subject domain

all captured information on the modules affected for each constituent change of a release,

which added to the significance of selecting modules as change points. It must be

recognized that the level of change point granularity presented by a module can vary from

system to system; some programming languages encourage more collection of related

entities in their compilable objects than others. However, the collection of change

information at levels lower than the lowest identifiable configuration item is problematic;

indeed, there are few maintenance organizations where the collection of change

information down to the module level is possible.

 Based on the above considerations, selection of a subject domain for this inquiry

was based primarily on the existence of histories of regularly scheduled releases, with

release documentation including named changes and the constituent affected modules.

3.2 Description of the Domain

 The domain chosen as the target of this inquiry is that of integrated tactical

warning and attack assessment (ITW&AA) correlation systems. ITW&AA is the primary

mission of the North American Aerospace Defense Command (NORAD), a combined

command consisting of American and Canadian military forces. Headquartered at

Peterson Air Force Base, Colorado Springs, Colorado, NORAD is responsible for

defending the North American continent from air, missile and space threats posed from

 45

hostile foreign countries. Its primary command center for coordinating these operations is

located at Cheyenne Mountain Air Force Base, south of Colorado Springs. ITW&AA

correlation systems take event messages from a variety of sensors located around the

world regarding air, missile, and space threats to the North American continent and “fuse”

the information into a coherent depiction for use by senior military decision makers.

 Each of the three mission segments has its own correlation system: 1) Granite

Sentry for air correlation; 2) Command Center Processing and Display System -

Replacement (CCPDS-R) for missile correlation; and 3) Space Defense Operations Center

(SPADOC) for space correlation. Procurement of each of these systems was commenced

separately, then later consolidated under the $1.8B Cheyenne Mountain Upgrade (CMU)

program. However, program consolidation did not result in architectural cross-

fertilization, and the three systems were essentially developed independently. They do

exchange event information according to well-defined criteria using a common inter-

mission bus. The following sections overview each of the three systems.

3.2.1 Granite Sentry

 Granite Sentry provides correlation support to the personnel who staff the Air

Defense Operations Center (ADOC) in Cheyenne Mountain Air Force Base. The

operational version of Granite Sentry was delivered to the Air Force in 1992 as Phase III

of an incremental development. The Granite Sentry program was originally developed in-

house by military programmers, but development was later transferred to the Lockheed-

Martin Corporation (LMCO). The operational version is scheduled to be replaced in early

 46

1997 with a “final capability” version. The software consists of approximately 300,000

source lines of code that execute on at least two Digital Equipment Corporation VAX

8550 computers (total delivered: 5) and networked VAX workstations located in the

mission work centers. Granite Sentry software is written almost entirely in Ada, although

command scripts and graphical definition files are often touched in enhancive maintenance.

 Besides providing historical change data to support the domain analysis, an effort

by Lockheed Martin to identify and encapsulate volatility in the final version will be

analyzed to validate the cost-benefit of addressing software volatility.

3.2.2 Command Center Processing and Display System - Replacement (CCPDS-R)

 CCPDS-R correlates inputs from land- and space-borne sensors and provides

display systems to assist NORAD in its mission to provide U.S. and Canadian decision

makers with unambiguous warning information of strategic missile attacks. The CCPDS-

R program replaced correlation systems located at Cheyenne Mountain Air Force Base,

Offutt Air Force Base in Omaha, Nebraska, and at the National Military Command Center

in Washington, D.C. and provided display terminals to U.S. and allied command centers

worldwide. The target of this study is the CCPDS-R “Common” correlation system

located in Cheyenne Mountain. Its software consists of 700,000 lines of Ada code

running on 2 networked Digital Equipment VAX 6000-530 computers.

 47

3.2.3 Space Defense Operations Center (SPADOC)

 SPADOC correlates the inputs of radar and optical sensors to support the

cataloging and tracking of space-borne objects, as well as providing information to

support warning of attack from space.

 Granite Sentry and CCPDS-R were both developed in the Ada programming

language by Lockheed-Martin Corporation and TRW, respectively. SPADOC was

developed in FORTRAN by Loral Corporation.

3.3 The Data Collection Subject: The Space and Warning Systems

Center (SWSC)

 The SWSC is responsible for maintenance of command and control and

communications systems that support NORAD and U.S. Space Command operations in

Cheyenne Mountain. It is a directorate of the Space Systems Support Group (SSSG), a

unit of the Air Force Materiel Command. The SWSC has performed the above mission

for over 25 years, and has developed a well-behaved process to coordinate the

maintenance of the hundreds of sensor, communication, correlation, and display software

systems comprising the integrated tactical warning and attack assessment (ITW&AA)

network. It is through the good graces of this organization and the integrity of its

maintenance process that this inquiry into software volatility is supported with complete

and concise change history data. The following is a description of this maintenance

 48

process, provided with the intent of communicating a perspective from which the data

presented in this section is analyzed.

 All software systems that belong to the ITW&AA network participate in a

coordinated process of maintenance updates referred to as the “vertical release process.”

While each system’s maintenance organizations are free to make whatever “stand alone”

changes they deem necessary, all systems must coordinate changes that affect other

systems in a series of review boards. In the case of a coordinated change, a “generic”

standard change form (SCF) is written by the requiring party, which is then presented to a

board for impact analysis. Each system that identifies an impact based on the generic SCF

is responsible for writing a “corollary” SCF to instigate their part of the change. Another

board decides on the content of vertical releases consisting of generic and accompanying

corollary SCFs, nominally delivered every six months. Vertical releases are named using

the last two digits of the year in which they are delivered, appended with a sequence

number, e.g. “95-1”. Inclusion of a generic-corrollary SCF set in a release gives each

participating maintenance organization a common delivery date to aim for to ensure that

all systems remain interoperable after the release. If any organization subsequently

determines that it cannot meet the release date with its corollary, the entire SCF may be

backed out of the release in a coordinated fashion.

3.4 Method: Establishing The Nature of Volatility

 The first objective of this part of the inquiry was to determine how to characterize

volatility. The fundamental meaning of this characterization should ultimately support

 49

decisions by program managers on where to best target resources to mitigate volatility.

However, even before characterization is undertaken, it must be recognized that there

must exist a certain fundamental behavior of software volatility, that of regularity of

change in a small percentage of the software. If, over time, the change inflicted upon a

software system is uniformly spread across a large proportion of the system, then the cost-

benefit of expending resources to encapsulate volatility is questionable. The data collected

and presented in this part of the inquiry was targeted to establishing meaningful measures

of volatility and identifying its non-uniform distribution in the subject domain.

3.4.1 Change History Data Collection

 In order to characterize the nature of volatility, maintenance releases from

software-based systems with well-documented histories of change were studied to

determine what proportions of the software were revisited for enhancive modifications by

frequency over a contiguous period of time. Absence of major developmental incursions

such as incremental deliveries was determined to be an important constraint to the series

of releases considered, for incremental deliveries introduce new parts of the system with

no previous volatility experience. These new parts do not experience the same volatility

potential for the studied period of time as do the rest of the system. Characterization of

their volatility cannot thus be compared to the rest of the system under analysis. This

proved to be a major limitation in data collection, for at least two of the ITW&AA

systems in the subject domain had experienced recent incremental deliveries that reduced

the amount of contiguous time under maintenance considerably.

 50

 For this inquiry, a goal of five releases worth of contiguous data was established,

but was only met for one system. The data dictionary established to support data

collection is given in Table 3.1:

 Source

Level Nomenclature Definition Granite
Sentry

CCPDS-R SPADOC

Release Title Designator used
to identify the
release

Code Turnover
Report (CTR)

CTR Version
Description
Document
(VDD)

Release Operational Date Date release was
first put into
operational use

SCF Data
Base

SCF Data
Base

SCF Data
Base

Change UCN Alpha-numeric
designator
assigned to each
change

CTR CTR VDD

Change Title Descriptive title
assigned to each
release

SCF Data
Base

SCF Data
Base

VDD

Change Mod/Fix Modification/ Fix
Categorization

CTR (Second
to last letter of
UCN)

CTR (Second
to last letter of
UCN)

CTR (Second
to last letter of
UCN)

Module Name Name of module
as known to the
compiler, usually
a file name

CTR CTR VDD

Module Category Type of module,
e.g. package
specification, data
file, etc.

CTR (Module
name
extension)

CTR (Module
name
extension)

VDD

Table 3.1: Change History Data Dictionary

 The two major sources of affected module data were Code Turnover Reports

(CTRs) (CCPDS-R, Granite Sentry) and Version Description Documents (VDDs)

(SPADOC). There is a fundamental difference in the submission of these two products

that renders an inconsistency in their interpretation. CTRs are developed for each

 51

software build delivered during the release development. Builds are an intermediate

release given to the testers. Given that errors can (and usually do) exist in the initial

implementation of a change, modules that appear in the first build of a release for a given

change can appear again for that same change in subsequent builds. CTRs thus yield

different touch counts than VDDs, which report the modules affected by a given change

reported once, no matter how many builds contain the changed module. The same

document (VDDs or CTRs) was not available for all three systems, so a consistent

definition for touch count could not be applied.

 The number of releases required to achieve significance in the tabulation will be

addressed in the section on analysis. All three systems use the same release title

nomenclature, so the data coverage is presented in Table 3.2.

System 94-1 94-2 95-1 AOC-2 95-2 96-1 96-2 97-1

Granite Sentry N/A x x x

CCPDS-R x x x x x x x

SPADOC N/A x x x

Table 3.2: Module Volatility Release Coverage Data Available
 x Used in module analysis

 The data described above was provided by the SWSC in hard copy. OCR

equipment and text editing software was utilized to produce spreadsheets of the data

suitable for analysis. The SPADOC 94-1 and 94-2 releases were not used in this analysis

due to the delivery of an “acquisition release” in the intervening period that disturbed the

continuity of the system with major modifications that would have invalidated the module

volatility metrics.

 52

3.4.2 Change History Data Reduction

 In order to perform the analysis required to substantiate the proof criteria, change

frequency tabulations were compiled for each system of the subject domain. Each change

frequency tabulation consists of a sorted list of all the modules touched for each change

made in a contiguous series of releases. This tabulation is presented as a list of modules

sorted in decreasing order of frequency of change. It is important to understand the

structure of this presentation, for it forms the basis upon which all of the subsequent

volatility relationships are established. For a given system, the modules at the top of the

list are impacted by more change over time than modules that appear lower on the list.

Any touch count greater than 1 is an indicator of volatility, signifying that such a module

has relevance in at least two or more enhancive changes.

 The first reduction accomplished was to cull out the “fix” changes in order to limit

the scope of the analysis to enhancive maintenance, categorized in the subject domain as

“modifications.” The essential indicator of volatility is frequency of change, so initially the

module occurrences across all releases were tabulated for each system. Subsequent

inspection of the data from the subject domain revealed the case where a module was

touched multiple times by multiple changes in one release, and not at all in the others. It

was recognized that this case rendered no value in terms of predicting change frequency,

so the count of the number of releases where a module was touched was substituted.

Specifically, if a module was touched at least once in a release, then a count of “1” was

established for that module in that release. This method provided a count that reflected a

frequency of change, based on the fact that releases were regularly scheduled in all three

 53

subject domain systems. Change frequency tabulations were developed in the following

format for each of the three systems:

Module Release 1 Release 2 Release 3 Touch Count Release Count
MODULEA 3 2 4 9 3
MODULEB 2 1 3 6 3
MODULEC 2 1 0 3 2
MODULED 1 0 0 1 1

Table 3.3: Sample Change Frequency Tabulation

 It must be recognized that the touch count can have significance along with the

release count in characterizing volatility of a given module. However, for this inquiry,

inconsistencies in the means of reporting affected modules between systems of the subject

domain prevent a meaningful interpretation. Therefore, release count was identified as the

primary metric for the characterization of volatility.

 The module change frequency tabulations developed for each of the systems of the

subject domain are presented in Appendices A (SPADOC), B (CCPDS-R), and C (Granite

Sentry). Inspection of the data revealed the following summary metrics, useful in

characterizing module-level volatility at a glance:

Metric SPADOC CCPDS-R Granite

Sentry
Number of Modules in System 3768 4353
Number of Modules Touched > 0 288 749 259
Number of Modules Touched > 1 90 162 21
Number of Modules Touched > 50% 90 14 21
Maintenance Focus 64% 20% 6%
Volatility Focus 20% 4% 0.5%
Volatility Concentration 31% 22% 8%

 Table 3.4: Summary Volatility Metrics

 54

 The module counts were chosen for their potential significance: “>0” represents

modules touched in at least one release of the subject period, which provides information

on how much of the system receives attention in maintenance. “>1” represents modules

touched in more than one release during the subject period, which represents the threshold

of volatility according to the operational definition. Modules touched in more than one

release during the subject period experienced a phenomenon termed “revisit” for this

inquiry. That is, a volatile module is one that has received attention in two or more

releases separated by the significant time between releases. “>50%” represents modules

touched in more than 50% of the releases of the subject period. This percentage was

arbitrarily selected as an threshold of significant volatility per the operational definition;

due to the small number of releases available for SPADOC and Granite Sentry, this

threshold has no significance. For CCPDS-R however, the seven releases of change

history did present a significantly smaller number of modules with release counts > 50%

for consideration.

 The percentage metrics represent fundamental relationships between the counts

described above. Each metric is defined as follows:

1. Maintenance Focus: The percent of the system touched for maintenance

during the subject period (Number of modules touched >0 / Number of modules in

system).

 55

2. Volatility Focus: The percent of the system touched for maintenance in

more than one release during the subject period (Number of modules touched > 1 /

Number of modules in system).

3. Volatility Concentration: The percent of the system touched for

maintenance that was touched in more than one release (Number of modules

touched > 1 / Number of modules touched > 0). This metric provides a

normalized volatility proportion suitable for comparison amongst the systems of

the subject domain.

 The most important analysis supported by module volatility was the establishment

of the concentration of frequency of change in a relatively small part of the systems of the

subject domain. This was accomplished by tabulating the number (n) of modules with

each change frequency (f) in all three systems; for a given nf, nf > nf+1:

Number of Releases (f) CCPDS-R Granite
Sentry

SPADOC

5 1 - -
4 13 - -
3 44 - 45
2 104 21 45
1 587 238 198

Table 3.5: Change Frequency Summary

With the exception of n2 = n3 for SPADOC, all other change frequencies exhibit the

condition nf > nf+1.

 56

3.5 Method: Identifying Cross-System Volatility Correlations

 An activity essential to providing information to software developers on what

attributes of software to encapsulate is the identification of common change drivers across

systems of the domain. “Commonality” has two dimensions, 1) the degree of occurrence

in systems of the domain, and 2) the frequency of occurrence in the systems where the

change driver occurs. To determine change driver commonality, it is necessary to develop

the same sort of topology as developed for software components.

3.5.1 Cross-System Volatility Data Collection

 The original intent of this dissertation was to determine change drivers for changes

of the subject domain using information from the primary change document, the SCF. In

this way, the change driver identification technique could be developed to be applied to

systems maintained with a nominal degree of process. However, the act of change

documentation is highly dependent on the individual judgment of programmers and

analysts regarding the proper descriptive words, resulting in a wide variety in the

application of the English language in change titles and short descriptions. Additionally, it

was revealed during inspection of the changes from the subject domain that a few were

actually containers for multiple related changes. For example, one SCF in the Granite

Sentry collection held the title “Database Changes.” This SCF turned out to encompass

changes to three distinct databases, a fact not derivable from the SCF form.

 Consequently, other documentation was eventually identified to support the

change driver analysis. The SWSC directs the development of a set of documents during

 57

the analysis, design, implementation, integration, and testing of approved changes. The

Requirements Analysis/Design Intent (RADI) document is developed for each change

selected to be incorporated into an up-coming release, and contains detailed descriptions

of the modified system requirements, tagged for traceability to the original system

requirements document and the appropriate test cases. The change descriptions used to

accomplish change driver identification were taken from the introductions of these

documents. The following table identifies the releases from which RADI change

descriptions were obtained for change driver analysis:

System 94-1 94-2 95-1 AOC-2 95-2 96-1 96-2 97-1

Granite Sentry N/A

CCPDS-R

SPADOC N/A

Table 3.6: Change Driver Release Coverage Data Available and used in
 change driver analysis

3.5.2 Cross-System Volatility Data Reduction

 Even with the concise descriptions extracted from the RADI documents, the

wording was sufficiently inconsistent to render automated semantic analysis impossible. A

scoring technique was developed to identify the constituent change drivers of an SCF in a

two-step process. First, the generic changes accomplished in the SCF were identified as

verb-object pairs from a small set, specifically the one described in Table 3.6:

 58

 object

verb

input process output

add

append x

alter x

delete

remove

Table 3.7: Change Driver Generic Pairs Example

The verbs are the same as the categories of modification described in paragraph 3.1. The

object is simply to categorize the modified entity as either input, processing, or output. In

this task, it is essential to describe the change in the system’s behavior, not necessarily the

mechanism changed. For instance, a change in the border width for a text box may be

accomplished on the subject system by changing a numeric value in a configuration file;

this change would be more appropriately describe as “alter output” referring to the

modified display, rather than “alter input” referring to the modified data file. For the first

step, the short SCF description from the RADI was scanned sentence by sentence, and

each applicable verb-object pair was identified. In the second step, each verb-object was

revisited in the description and a one-word name was identified for the entity modified

under the verb-object pair. Focusing the selection of a generic object name for each

change driver by first categorizing it as input/output/data served to increase the probability

of identifying consistent names that could be compared across systems.

 In the same manner as that accomplished for module volatility, change driver

volatility was tabulated for each system with both occurrence counts and release counts.

These tabulations are presented in the following table:

 59

Category CCPDS-R Granite SPADOC Total Percent of
Total

alter output 120 21 200 341 35%
alter input 42 2 136 180 19%
alter process 39 12 120 171 18%
append output 57 1 52 110 11%
append input 21 0 40 61 6%
append process 10 0 24 34 4%
delete output 24 1 1 26 3%
delete input 12 1 4 17 2%
add output 10 0 1 11 1%
delete process 1 1 4 6 1%
add process 4 0 1 5 1%
add input 0 0 1 1 ≈ 0%
remove input 0 0 0 0 0%
remove output 0 0 0 0 0%
remove process 0 0 0 0 0%

Table 3.8: Change Category Tabulation

 Correlation among the three systems was established using Spearman’s coefficient

of rank correlation as follows:

 H0: rs = 0; H1: rs > 0

 Critical value of t = 2.650 (α = .01, df = 13, one-tailed test)

 Granite Sentry CCPDS-R SPADOC
Granite Sentry -

- -

CCPDS-R rs = .79
t = 4.70

- -

SPADOC rs = .81
t = 5.07

rs = .87
t = 6.37

-

Table 3.9: Change Categorization Correlation

H0 is therefore rejected for all three combinations, establishing a significant correlation

among the clustering of change categories.

 60

 Establishing the most prevalent category of change was accomplished by a ranking

by both frequency within systems as well as occurrence in more than one system. The

following table lists the change objects that occurred in two or more of the systems, along

with their total exposure:

Object Occurrence CCPDS-R Granite SPADOC Total
Exposure

display 3 112 21 144 277
message 3 104 3 84 191
menu 2 20 0 26 46
satellite 2 2 0 14 16
COTS 2 3 0 12 15
command 2 3 0 6 9
site 2 0 1 7 8
alarm 2 2 2 0 4
threat 2 0 1 1 2
count 2 1 0 1 2
keyboard 2 1 0 1 2

Table 3.10: Predominant Change Objects

 The sort performed on the above table used “Occurrence” as the first sort key and

“Total Exposure” as the second. In this instance, the exposure rankings conform to the

primary sort on the number of systems in which the change object appears; this does not

always have to be the case. A large number of occurrences in one system can push a

change driver with a lower occurrence into the territory of objects which occur in more

systems. The objective of this particular analysis is to determine “predominant change

objects,” where the first condition of predominance is the occurrence of the object in many

systems of the domain. Sorting first by occurrence serves this first condition; sorting

second by exposure serves to rank the objects within their “buckets” of occurrence.

 61

 It should be noted that, for the subject domain, there is a high degree of correlation

between occurrence in many systems and change volume. Correlation of occurrence

among the systems and the exposure in each system was established using Spearman’s

coefficient of rank correlation as follows:

 H0: rs = 0; H1: rs > 0

 Critical value of t = 2.358 (α = .01, df ≈ 60, one-tailed test)

 Granite Sentry CCPDS-R SPADOC
rs 0.8263851 0.652381 0.6147092
t 11.555496 6.7778233 6.136548

Table 3.11: Change Object Correlation

3.6 Method: Asserting the Benefit of Addressing Volatility

3.6.1 Cost Comparison Data Collection

 Granite Sentry offered an opportunity for comparison of change costs between a

system where volatility was not formally addressed in its design with the equivalent system

where volatility was analyzed and encapsulated. Particularly, for vertical release 95-2, the

organization developing the replacement system incorporated SCFs that the operational

system also incorporated. To support cost comparison, the rough-order-of-magnitude

(ROM) cost estimates for 12 of 13 identical modifications made to both systems were

obtained from the responsible organizations. Additionally, impacted module tabulations

were also obtained for 5 of the 13 releases. It was determined from interviews with

engineers from the development team that most of the system attributes determined to be

 62

volatile were encapsulated in .BCP files and imported into the data base management

system for subsequent use by the executing system.

3.6.2 Cost Comparison Data Reduction

 It was first determined that the cost estimates for effecting each change to the new

system was on average 53% less than the costs estimated to make the equivalent changes

on the old system. To attempt to determine the contributory benefit of volatility

encapsulation, the cost difference was correlated against the difference in number of Ada

modules impacted and the number of .BCP files impacted in the new system. Using this

computed data from the 5 changes with module data, a regression analysis was performed.

At the .05 significance level, it was determined that the selected independent variables do

not have the capability to predict difference in change cost between the new and old

Granite Sentry systems, making it impossible to attribute any component of cost benefit

directly to the encapsulation method used.

 63

Chapter 4

Analysis

4.1 Analysis: Establishing The Nature of Volatility

 Development of volatility tabulations for the systems of the subject domain

provided interesting insight into the nature of software evolution. However, cross-

comparison between systems of module-oriented volatility metrics is of limited value for

the following reasons:

1. Differences in reported entities alter the level of granularity with which

volatility is identified. In the cases of CCPDS-R and Granite Sentry, the reported

entity was the Ada package or program. For SPADOC, the reported entity was

the Computer Program Component (CPC), which encompassed all the FORTRAN

routines supporting a system function. SPADOC’s CPC represented a level of

granularity comparable to the Computer Software Component (CSC) used in

CCPDS-R and Granite Sentry, which contain a large number of modules. So, for

every component impacted by a change in SPADOC, a larger percentage of the

total system was counted.

2. The releases comprising the subject period for Granite Sentry did not

include the number of changes that would normally be considered due to the

impending arrival of the replacement system. This fact correlates to Granite

 64

Sentry’s small volatility metrics compared to CCPDS-R and SPADOC. Even the

normalized volatility concentration (8%) exhibits a significant difference from the

SPADOC (31%) and CCPDS-R (22%) numbers to which attribution to a

significant difference in change traffic cannot be discounted.

 For the above reasons, module volatility metrics cannot be reliably used for

developing domain characterizations. However, the module volatility topology

represented by the tabulation of module touch counts can provide information of

significant utility to maintainers of the system. For instance, for the set of corrective

changes made during a series of releases, identification of modules visited the most points

to specific places in the system with reliability problems. Additionally, the volatility focus

metric can be used as an indicator of the proportion of the overall system with reliability

problems. But the focus of this inquiry is to establish the validity of characterizing

volatility; the essential contribution of module volatility analysis is to validate the

fundamental nature of volatility. Toward this end, the module change frequencies

tabulated for all three systems illustrate the phenomenon that change happens over time in

a relatively small proportion of the total source code, evidenced by the frequency counts

of all three systems meeting the condition nf > nf+1.

4.2 Analysis: Identifying Cross-System Volatility Correlations

 It then becomes imperative to engineer a contrivance to produce consistent

manifestations of the behavior of volatility across systems. Simple categorization of

change according to the five verbs and three objects described in Chapter 3 may seem

 65

trivial, but these descriptors are universally applicable to all software systems. It may

eventually come to pass that enough categorization of change in this general manner is

gathered to characterize volatility universally, providing motivation to developers in all

domains to concentrate on, say, making “alter output” easy to accomplish in their system

because it is the most prevalent type of change. With regard to specific domains, the

second step of using the change category to identify a generic object shows significant

promise, if only to categorize domain change with respect to inputs and outputs.

Processing appears to be too specific to individual systems to drive out common change

objects using this mechanism. The percent contribution of each of the identified change

objects to the overall volatility exposure of the domain is listed in the table below:

Object Occurrence (#
systems)

CCPDS-R Granite Sentry SPADOC Average
Percent

display 3 37.33% 63.64% 38.20% 46.39%
message 3 34.67% 9.09% 22.28% 22.01%

menu 2 6.67% 0.00% 6.90% 4.52%
satellite 2 0.67% 0.00% 3.71% 1.46%
COTS 2 1.00% 0.00% 3.18% 1.39%

command 2 1.00% 0.00% 1.59% 0.86%
site 2 0.00% 3.03% 1.86% 1.63%

alarm 2 0.67% 6.06% 0.00% 2.24%
threat 2 0.00% 3.03% 0.27% 1.10%
count 2 0.33% 0.00% 0.27% 0.20%

keyboard 2 0.33% 0.00% 0.27% 0.20%

file 1 0.00% 0.00% 5.57% 1.86%
dialog 1 0.00% 0.00% 3.71% 1.24%
alert 1 4.00% 0.00% 0.00% 1.33%
rules 1 3.33% 0.00% 0.00% 1.11%
data 1 2.00% 0.00% 0.00% 0.67%
DIM 1 0.00% 12.12% 0.00% 4.04%
report 1 1.33% 0.00% 0.00% 0.44%
time 1 1.33% 0.00% 0.00% 0.44%

element set 1 0.00% 0.00% 1.06% 0.35%

Table 4.1: Change Object Volatility Contribution

 66

Object Occurrence (#
systems)

CCPDS-R Granite Sentry SPADOC Average
Percent

notification 1 0.00% 0.00% 1.06% 0.35%
orbit 1 0.00% 0.00% 1.06% 0.35%

security 1 0.00% 0.00% 1.06% 0.35%
status 1 1.00% 0.00% 0.00% 0.33%
timer 1 1.00% 0.00% 0.00% 0.33%

baud rate 1 0.00% 0.00% 0.53% 0.18%
options 1 0.00% 0.00% 0.53% 0.18%
weapon 1 0.00% 3.03% 0.00% 1.01%
error 1 0.33% 0.00% 0.00% 0.11%

failover 1 0.33% 0.00% 0.00% 0.11%
form 1 0.33% 0.00% 0.00% 0.11%

message field 1 0.33% 0.00% 0.00% 0.11%
message filter 1 0.33% 0.00% 0.00% 0.11%

scenario 1 0.33% 0.00% 0.00% 0.11%
summary 1 0.33% 0.00% 0.00% 0.11%

table 1 0.33% 0.00% 0.00% 0.11%
thresholding 1 0.33% 0.00% 0.00% 0.11%

track 1 0.33% 0.00% 0.00% 0.11%
applications 1 0.00% 0.00% 0.27% 0.09%

ASAT 1 0.00% 0.00% 0.27% 0.09%
buffer 1 0.00% 0.00% 0.27% 0.09%
catalog 1 0.00% 0.00% 0.27% 0.09%

CIS 1 0.00% 0.00% 0.27% 0.09%
cluster 1 0.00% 0.00% 0.27% 0.09%

collision avoidance 1 0.00% 0.00% 0.27% 0.09%
consistency 1 0.00% 0.00% 0.27% 0.09%
decay dates 1 0.00% 0.00% 0.27% 0.09%

edit 1 0.00% 0.00% 0.27% 0.09%
Ephemeris 1 0.00% 0.00% 0.27% 0.09%

extrapolation DC 1 0.00% 0.00% 0.27% 0.09%
folder 1 0.00% 0.00% 0.27% 0.09%

interface 1 0.00% 0.00% 0.27% 0.09%
IRONs 1 0.00% 0.00% 0.27% 0.09%
keys 1 0.00% 0.00% 0.27% 0.09%

maneuver 1 0.00% 0.00% 0.27% 0.09%
msg 1 0.00% 0.00% 0.27% 0.09%

multipliers 1 0.00% 0.00% 0.27% 0.09%
observation 1 0.00% 0.00% 0.27% 0.09%

printer 1 0.00% 0.00% 0.27% 0.09%

Table 4.1: Change Object Volatility Contribution (continued)

 67

Object Occurrence (#
systems)

CCPDS-R Granite Sentry SPADOC Average
Percent

projection 1 0.00% 0.00% 0.27% 0.09%
screen print 1 0.00% 0.00% 0.27% 0.09%

solar 1 0.00% 0.00% 0.27% 0.09%
vote 1 0.00% 0.00% 0.27% 0.09%

window 1 0.00% 0.00% 0.27% 0.09%

Table 4.1: Change Object Volatility Contribution (continued)

The remaining change objects contributed 1% or less each and/or occurred in only one

system. With respect to the subject domain, the two most volatile object types, displays

and messages, occurred in all three systems and accounted for an average of 68% of the

total exposure to change. The next most volatile object in at least two of the systems is

the menu, accounting for an average of 5% of the total exposure to change across two of

the three systems. Given these measured proportions of volatility, an assertion of

significant values of m for corresponding p can be made. For the subject domain,

significant values of m at p=46%, is 1; p=68%, is 2; p=73%, is 3. Higher values of m do

not contribute significantly to the total domain volatility. The significance of this assertion

is that, for the domain of integrated tactical warning/attack assessment correlation

systems, developers of these systems can accommodate approximately 68% of the

anticipated volatility during maintenance by encapsulating aspects of first displays, then

messages, with change mechanisms. The traditional “80% - 20%” rule of Pareto analysis

was also considered, where the number of change objects that account for 80% of the

enhancive maintenance was determined. This value, m80% = 8, includes five change

objects who contribute only an average of 1.5% each to the total enhancive effort.

 68

However, m80% incorporates 13% of all identified change objects, indicating an even

higher concentration of change than the “80% - 20%” pattern.

 It should be noted that there were change objects that contributed to the total

enhancive effort of the domain on the order of menus (i.e., DIM processing, 4%), but

occurred in only one system (SPADOC). As with the number of releases a change object

was touched, the number of systems it appears in has to be considered separately from its

change traffic in order to give proper weight to its prevalence among systems over any

high volatility within a single system. So, for any volatility analysis, be it of modules

within a single system or change objects among systems, prioritization should occur first

by release or system (module or change object volatility respectively), then by impact

count. This sorting “bucketizes” change traffic according to its prevalence.

 It can be argued that the input/output-oriented change objects comprising displays

and messages have many more instances within a specific system than the specific

processing identified in the analysis. Indeed, each of the three systems of the subject

domain contain components corresponding to tens if not hundreds of displays and

messages, where the processing objects identified usually consisted of a single instance.

But the proportions of change categories tabulated for the subject domain support the

imperative to attend to displays and messages, for all processing changes accounted for

only 22% of the total change analyzed in the subject domain versus 51% attributed to

outputs.

 69

4.3 Analysis: Asserting the Benefit of Addressing Volatility

 Based on the available data, it was impossible to attribute a specific component of

reduced change cost to the new Granite Sentry’s encapsulation method. Indeed, many of

the same people who developed the old Granite Sentry were involved in developing its

replacement and may very well have engaged in other improvements of code organization

and structure that resulted in more efficient change.

 The analysis presented in this chapter establishes the nature of enhancive software

volatility and manifests the potential to identify common change drivers in systems of a

domain. The next chapter discusses the implications of this analysis with respect to its

constructive impact on the process of software development.

 70

Chapter 5

Results and Conclusions

5.1 Summary of Results

 This dissertation set out to validate the concepts of volatility identification and

encapsulation as beneficial influences on system life cycle costs. The foundation for this

validation was the proof of the three hypotheses presented in Chapter 1. The summary of

the decisions regarding the hypotheses are:

H1: Distribution of frequency of enhancive change in a system is not uniform:

Proven - Frequency of change is not uniformly distributed.

H2: Within a domain, the most volatile objects of change are common to all systems:

Proven - Systems of a domain can experience common change drivers.

H3: Effort expended in software development to encapsulate a volatile point reduces

the cost to change the encapsulation object in maintenance:

Not Proven - Insufficient data to assert a correlation between volatility

encapsulation and cost savings.

 While the cost-benefit of addressing volatility was not proven, the behavior of

volatility exhibited within systems and correlated among systems of a domain shows

significant potential for cost reduction through encapsulation. First, significant rates of

 71

revisit in certain modules of a system, as proven by H1, validates the assertion that the

extra cost of encapsulation can be amortized over multiple instances of change cost

reduction. So, the following relationship must hold for a specific encapsulation effort:

 SM SM EFE C< ×∆

 Where:

 SME = Cost to encapsulate in staff-months

 SM∆C = Cost to inflict a single instance of a change driver (from

 Equation 1)

 EF = Expected instances of change during life cycle

 The selection of change drivers to encapsulate in new software development can

be assisted by the selection of an appropriate value of m for a given percentage of

anticipated volatility. Given that the equation describing the Pareto curve of volatility

topology is logarithmic,

 ()y C x b= +ln ,

the second derivative,

d y

dx

C

x

2

2 2
= − ,

 72

is a potential indicator of the point on the curve where the most volatile change drivers are

captured. However, the selection of a particular m is dependent not only on the

contribution of each change driver to the overall anticipated volatility, but also to the cost

to effectively encapsulate the change driver. Pragmatic consideration of the available

resources may preclude engaging in a particularly costly encapsulation, even if the change

driver’s volatility contribution to p is high. By this insight, it should be apparent that the

selection of m based on a mathematical criterion such as significant transitions of the

second derivative would be unnecessarily arbitrary.

 The second contribution is that there is a consistent way to identify change objects

in systems of a domain such that common objects can be identified in all the systems.

Further, for the subject domain, certain common change objects exhibited high volatility in

all systems, proven by H2, to the point that two of the objects (displays and messages)

account for an average of 68% of the enhancive volatility in all three systems. So, for the

ITW&AA correlation systems domain, encapsulating changeable aspects of displays has

the potential of addressing as much as 46% of the expected enhancive volatility in a new

system, and doing the same for messages will potentially address another 22%. In fact,

the first order characterization (add, append, alter, delete, remove; input, processing,

output) has potential for categorizing patterns of change across all software systems. It

should be noted that developers in the ITW&AA domain may wish to tabulate the change

objects with the associated first-order verbs to further define the prevalent types of change

inflicted upon the change objects. The representation of volatility as an ordered pair also

constituted a significant contribution, recognizing the time-ordered distribution of change

 73

as the primary indicator of volatility worth addressing, followed by the total activity over

the period under study.

 It should be recognized that, no matter how incisive the information presented by a

volatility analysis, the effort expended on it will amount to naught unless there is

motivation within a software development manager to expend resources specifically

targeted to encapsulating potentially volatile points. Proof of the third hypothesis is

eventually required to provide the compelling evidence that volatility encapsulation is a

viable life cycle alternative. In the near term, the effort of the SWSC to specify the

process of domain engineering within the context of their organization offers the

opportunity to inject volatility identification and encapsulation into the roles and

responsibilities of specific individuals. In the SWSC’s Domain Engineering guidebook [2],

the domain focus is captured in the “product line organization,” which specifies roles and

responsibilities for the functions required to build and maintain a domain architecture

supporting a “product line” of specific, related systems. Specifically, module-level

volatility analysis provides product line managers an incisive set of metrics with which to

identify and prioritize perfective modifications to their software charges to support lower

change costs. Change driver metrics also have value to product line managers, supporting

their efforts to characterize volatility across all systems of their product line. Change

driver analysis may also provide value to product line domain analysis as an alternate

source of identification for objects of the service layer.

 74

5.2 Conclusions and Further Study

 The main contribution of this dissertation was to establish a methodological model

for directly addressing software volatility in new systems development. The proposed

model also provides a framework for further validation of the effort to address software

volatility. Based on the demonstrated tendency of change to cluster with respect to

frequency in a relatively small part of a software system, the fundamental behavior of

volatility was established, providing the fundamental motivation to address it in

development. It was also shown that categorizations of change form a promising means

of identifying common change drivers in software systems of a domain, providing the

essential information for addressing volatility in new development. Yet to be shown is the

fundamental economic cost benefit of addressing volatility; based on the complex nature of

real-world software development and all its influences, the best approach for

demonstrating cost-benefit is probably through a controlled experiment.

 With respect to characterization, other domains should be subjected to the same

analysis to discover consistent patterns of volatility. Also, the results of change driver

analysis should be analyzed across domains to attempt discovery of change patterns

common to all software systems.

 The methodology of change driver characterization deserves further refinement,

especially with regard to its potential contribution to domain analysis. In particular, the

use of a controlled language for writing change descriptions would provide significant data

to volatility research, allowing effective comparison of change activity across systems of a

 75

domain. It could also provide useful data to other endeavors, such as change impact

analysis and reengineering initiatives.

 Finally, this dissertation focused on only one of the two fundamental activities of

addressing volatility: identification. The activity of encapsulation warrants further

definitional effort and development of a coherent taxonomy based on implementation costs

incurred and change costs saved. Particularly, an encapsulation break-even equation

would provide software developers with a tool to evaluation encapsulation efforts with

respect to anticipated volatility and the software’s expected useful life. With these

contributions, the tools to address software volatility during new system development will

provide a coherent and effective approach to reducing software life cycle costs.

 76

Appendix 1

Volatility Characterization - SPADOC

 77

a. SPADOC Module Volatility Tabulation

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

ODFD 10 18 10 38 DB 3 100%

ORFI 6 19 10 35 DB 3 100%

ODFC 6 20 6 32 DB 3 100%

ODFO 7 18 7 32 DB 3 100%

OMOP 8 15 4 27 DB 3 100%

ORUD 5 15 7 27 DB 3 100%

OSPC 3 14 8 25 DB 3 100%

ORQI 5 17 2 24 DB 3 100%

OHER 6 6 5 17 DB 3 100%

AMFD 2 7 6 15 DB 3 100%

OPRF 4 8 2 14 DB 3 100%

AMDF 3 5 4 12 DB 3 100%

CT08 4 5 3 12 DB 3 100%

MNTPMP 2 3 6 11 APP 3 100%

AMMP 1 5 4 10 DB 3 100%

AMST 2 4 4 10 DB 3 100%

MNTPMM 1 3 6 10 APP 3 100%

MNTMLB 3 4 2 9 APP 3 100%

OATI 4 4 1 9 DB 3 100%

EM05 2 3 3 8 DB 3 100%

ORVV 2 2 4 8 DB 3 100%

ADSP 2 2 3 7 DB 3 100%

AMHVPP 2 3 2 7 APP 3 100%

BLDRUA 3 3 1 7 APP 3 100%

SPTCTN 3 3 1 7 APP 3 100%

LCHEVN 1 4 1 6 APP 3 100%

ACDA 1 3 1 5 DB 3 100%

CTLGSV 1 3 1 5 APP 3 100%

DIADSV 2 2 1 5 APP 3 100%

LCHNOM 1 3 1 5 APP 3 100%

MNTPFU 1 3 1 5 APP 3 100%

OSIOUT 3 1 1 5 APP 3 100%

DIADGN 2 1 1 4 APP 3 100%

DIAGIN 2 1 1 4 APP 3 100%

EM01 1 2 1 4 DB 3 100%

LCHLCM 1 2 1 4 APP 3 100%

MNTVAR 1 2 1 4 APP 3 100%

SPTLBR 1 2 1 4 APP 3 100%

BLDCNF 1 1 1 3 APP 3 100%

SPTRRD 1 1 1 3 APP 3 100%

STTGBO 1 1 1 3 APP 3 100%

STTGMO 1 1 1 3 APP 3 100%

STTGRO 1 1 1 3 APP 3 100%

 78

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

STTOBC 1 1 1 3 APP 3 100%

STTSTL 1 1 1 3 APP 3 100%

OCOM 3 7 0 10 DB 2 67%

ACMT 0 3 6 9 DB 2 67%

MNTMDI 0 4 4 8 APP 2 67%

BLDBLB 0 4 3 7 APP 2 67%

AMHLIB 3 3 0 6 APP 2 67%

LCHLLB 3 3 0 6 APP 2 67%

MNTMDC 0 2 4 6 APP 2 67%

AMHGVO 0 4 1 5 APP 2 67%

BLDRUC 1 4 0 5 APP 2 67%

CT03 2 3 0 5 DB 2 67%

CT16 0 3 2 5 DB 2 67%

MNTGB3 3 0 2 5 APP 2 67%

SPED 0 3 2 5 DB 2 67%

AMHOMP 0 3 1 4 APP 2 67%

CRIALP 0 3 1 4 APP 2 67%

CSICSP 0 1 3 4 APP 2 67%

CTLSSV 1 3 0 4 APP 2 67%

CTLSUH 0 3 1 4 APP 2 67%

SPTFEL 0 3 1 4 APP 2 67%

AMHAMP 1 2 0 3 APP 2 67%

AMHFCV 0 2 1 3 APP 2 67%

BLDMPC 1 2 0 3 APP 2 67%

CTLDST 0 2 1 3 APP 2 67%

CTLSHT 1 2 0 3 APP 2 67%

FELD 0 1 2 3 DB 2 67%

MNTAOB 0 2 1 3 APP 2 67%

OSIPBL 0 2 1 3 APP 2 67%

OSIUTL 0 2 1 3 APP 2 67%

SPTRNS 2 0 1 3 APP 2 67%

SSEC 0 2 1 3 DB 2 67%

TSKRTK 1 2 0 3 APP 2 67%

ASTRPC 0 1 1 2 APP 2 67%

BLDBSM 1 1 0 2 APP 2 67%

BLDBUC 1 1 0 2 APP 2 67%

CRSCSP 0 1 1 2 APP 2 67%

CTLSTH 1 1 0 2 APP 2 67%

DIAGOU 1 0 1 2 APP 2 67%

DIAGPH 1 1 0 2 APP 2 67%

MNTAOD 1 0 1 2 APP 2 67%

MNTMOB 0 1 1 2 APP 2 67%

MNTTTC 0 1 1 2 APP 2 67%

PRDRPT 1 1 0 2 APP 2 67%

RTAVFI 1 1 0 2 APP 2 67%

STTCRS 1 0 1 2 APP 2 67%

STTCRX 1 1 0 2 APP 2 67%

 79

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

AMHEXP 0 4 0 4 APP 1 33%

CRIHIO 0 4 0 4 APP 1 33%

CTLOPI 0 4 0 4 APP 1 33%

MNTPSP 0 4 0 4 APP 1 33%

SPTEEL 0 4 0 4 APP 1 33%

CRISVR 0 3 0 3 APP 1 33%

CRSALP 0 3 0 3 APP 1 33%

CRSCIF 0 3 0 3 APP 1 33%

CTLSRH 0 3 0 3 APP 1 33%

EMSEMC 0 3 0 3 APP 1 33%

LCHLDM 0 3 0 3 APP 1 33%

LETD 0 3 0 3 DB 1 33%

OSISEQ 0 3 0 3 APP 1 33%

PMERER 0 3 0 3 APP 1 33%

SMARTS 0 3 0 3 APP 1 33%

SMAWMG 0 3 0 3 APP 1 33%

CRICSP 0 2 0 2 APP 1 33%

CRISLP 0 2 0 2 APP 1 33%

CTLREH 0 2 0 2 APP 1 33%

CTLROT 0 2 0 2 APP 1 33%

EMSSXR 0 2 0 2 APP 1 33%

LCHISD 0 2 0 2 APP 1 33%

LCHSEG 0 2 0 2 APP 1 33%

LFOL 0 2 0 2 DB 1 33%

MGFL 0 2 0 2 DB 1 33%

MNTACC 0 2 0 2 APP 1 33%

MNTACI 0 2 0 2 APP 1 33%

MNTMGM 0 2 0 2 APP 1 33%

OSIGOC 0 2 0 2 APP 1 33%

OSISAM 0 2 0 2 APP 1 33%

RTXRTX 0 2 0 2 APP 1 33%

SAEI 0 2 0 2 DB 1 33%

SATI 0 2 0 2 DB 1 33%

SCSD 0 2 0 2 DB 1 33%

SMA 0 0 2 2 APP 1 33%

SMAALA 0 2 0 2 APP 1 33%

SMAMSD 0 2 0 2 APP 1 33%

SP08 0 0 2 2 DB 1 33%

SPTP 0 2 0 2 DB 1 33%

STXT 0 2 0 2 DB 1 33%

TSKTUT 0 2 0 2 APP 1 33%

AARF 0 1 0 1 DB 1 33%

ALA 0 0 1 1 APP 1 33%

AMFC 0 1 0 1 DB 1 33%

AMHMST 0 1 0 1 APP 1 33%

AMHRCV 0 1 0 1 APP 1 33%

AMHSOM 0 1 0 1 APP 1 33%

 80

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

AMHTAP 1 0 0 1 APP 1 33%

AMHVDI 0 1 0 1 APP 1 33%

ASTALB 1 0 0 1 APP 1 33%

ASTCPS 1 0 0 1 APP 1 33%

ASTDCI 0 1 0 1 APP 1 33%

ASTDCX 0 1 0 1 APP 1 33%

ASTEQM 0 0 1 1 APP 1 33%

ASTESO 0 0 1 1 APP 1 33%

ASTGRT 1 0 0 1 APP 1 33%

ASTIOM 0 1 0 1 APP 1 33%

ASTLAG 0 0 1 1 APP 1 33%

ASTMAD 0 0 1 1 APP 1 33%

ASTMDT 1 0 0 1 APP 1 33%

ASTOBS 0 0 1 1 APP 1 33%

ASTSEN 0 0 1 1 APP 1 33%

ASTUPM 0 1 0 1 APP 1 33%

BBLB26 0 0 1 1 APP 1 33%

BC3MNT 0 0 1 1 APP 1 33%

BCTL 0 1 0 1 DB 1 33%

BEISAV 0 0 1 1 APP 1 33%

BLBDCX 0 0 1 1 APP 1 33%

BLDBCC 1 0 0 1 APP 1 33%

BLDBEI 0 0 1 1 APP 1 33%

BLDREP 0 0 1 1 APP 1 33%

BSTR 0 1 0 1 DB 1 33%

CRSSIF 0 1 0 1 APP 1 33%

CRSSLP 0 1 0 1 APP 1 33%

CRSSVR 0 1 0 1 APP 1 33%

CSIMGA 0 1 0 1 APP 1 33%

CT17 0 1 0 1 DB 1 33%

CT18 0 1 0 1 DB 1 33%

CTLACS 0 1 0 1 APP 1 33%

CTLAPA 0 1 0 1 APP 1 33%

CTLASH 0 1 0 1 APP 1 33%

CTLDOH 0 1 0 1 APP 1 33%

CTLEHR 0 1 0 1 APP 1 33%

CTLEVT 0 1 0 1 APP 1 33%

CTLLOF 0 1 0 1 APP 1 33%

CTLRTG 0 1 0 1 APP 1 33%

CTLSQH 0 1 0 1 APP 1 33%

CTLTSH 0 1 0 1 APP 1 33%

DBAONI 0 0 1 1 APP 1 33%

DBAPRS 1 0 0 1 APP 1 33%

DBMAVT 0 0 1 1 APP 1 33%

DBMNTL 0 0 1 1 APP 1 33%

DIAPSS 0 0 1 1 APP 1 33%

DISCSC 0 1 0 1 APP 1 33%

 81

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

EATINP 0 1 0 1 APP 1 33%

EM05 0 0 1 1 DB 1 33%

EMSSRS 0 1 0 1 APP 1 33%

GBNV 0 0 1 1 DB 1 33%

LPRM 0 1 0 1 DB 1 33%

MARM 0 1 0 1 DB 1 33%

MN05 0 0 1 1 DB 1 33%

MNTBOB 0 0 1 1 APP 1 33%

MNTCOW 0 0 1 1 APP 1 33%

MNTEOD 0 0 1 1 APP 1 33%

MNTEPH 1 0 0 1 APP 1 33%

MNTMNB 0 0 1 1 APP 1 33%

MNTOBT 0 0 1 1 APP 1 33%

MNTPDC 0 1 0 1 APP 1 33%

MNTPOL 0 0 1 1 APP 1 33%

MNTTAC 0 1 0 1 APP 1 33%

NSEC 0 0 1 1 DB 1 33%

OCOV 0 1 0 1 DB 1 33%

ODSC 0 0 1 1 DB 1 33%

OPADAL 1 0 0 1 APP 1 33%

OPADOF 1 0 0 1 APP 1 33%

OPAITO 0 0 1 1 APP 1 33%

OPAJNC 1 0 0 1 APP 1 33%

OPAJWE 1 0 0 1 APP 1 33%

OPAOIT 0 0 1 1 APP 1 33%

OPARCV 1 0 0 1 APP 1 33%

OPARIT 1 0 0 1 APP 1 33%

OPASEL 1 0 0 1 APP 1 33%

OPASFC 1 0 0 1 APP 1 33%

OPASMF 1 0 0 1 APP 1 33%

OPATSC 1 0 0 1 APP 1 33%

OPAXMT 1 0 0 1 APP 1 33%

OPSDAR 1 0 0 1 APP 1 33%

OPSJSA 1 0 0 1 APP 1 33%

OPSRMC 1 0 0 1 APP 1 33%

OPSSEA 1 0 0 1 APP 1 33%

OPSSMR 1 0 0 1 APP 1 33%

ORPI 1 0 0 1 DB 1 33%

OSIDIP 0 1 0 1 APP 1 33%

OSIDOC 0 1 0 1 APP 1 33%

OSIINC 0 1 0 1 APP 1 33%

OSIINR 0 1 0 1 APP 1 33%

OSIOAP 0 1 0 1 APP 1 33%

OSIOSC 0 1 0 1 APP 1 33%

OSIOSD 0 1 0 1 APP 1 33%

OSISC 0 1 0 1 APP 1 33%

OSISRV 0 1 0 1 APP 1 33%

 82

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

PMEDCN 0 1 0 1 APP 1 33%

PMESST 0 1 0 1 APP 1 33%

PRDDAV 1 0 0 1 APP 1 33%

PRDEFM 1 0 0 1 APP 1 33%

PRDESI 1 0 0 1 APP 1 33%

PRDNCP 0 1 0 1 APP 1 33%

PRDNCU 0 1 0 1 APP 1 33%

PRDVPR 0 1 0 1 APP 1 33%

RDDS 1 0 0 1 DB 1 33%

RTAIPR 0 1 0 1 APP 1 33%

RTARTA 0 0 1 1 APP 1 33%

RTX 1 0 0 1 APP 1 33%

SATL 0 0 1 1 DB 1 33%

SAVREM 0 0 1 1 APP 1 33%

SCPA 0 0 1 1 DB 1 33%

SCPL 0 0 1 1 DB 1 33%

SCR 0 0 1 1 APP 1 33%

SDIR 0 0 1 1 DB 1 33%

SDTDPG 0 1 0 1 APP 1 33%

SFMWKD 0 1 0 1 APP 1 33%

SMAAEA 0 1 0 1 APP 1 33%

SMADEA 0 1 0 1 APP 1 33%

SMAGSA 0 1 0 1 APP 1 33%

SMAMCD 0 1 0 1 APP 1 33%

SMAMSA 0 1 0 1 APP 1 33%

SMASAV 0 1 0 1 APP 1 33%

SMASAW 0 1 0 1 APP 1 33%

SMASPS 0 1 0 1 APP 1 33%

SP07 0 0 1 1 DB 1 33%

SP09 0 0 1 1 DB 1 33%

SP10 0 0 1 1 DB 1 33%

SP11 0 0 1 1 DB 1 33%

SP12 0 0 1 1 DB 1 33%

SPTASF 0 1 0 1 APP 1 33%

SPTEQP 0 0 1 1 APP 1 33%

SPTIOD 0 1 0 1 APP 1 33%

SPTIOT 0 0 1 1 APP 1 33%

SPTRAF 1 0 0 1 APP 1 33%

SPTRDW 1 0 0 1 APP 1 33%

SPTRRI 1 0 0 1 APP 1 33%

SPTRSW 1 0 0 1 APP 1 33%

SPTSVP 0 1 0 1 APP 1 33%

SRFC 0 0 1 1 DB 1 33%

SRNK 0 0 1 1 DB 1 33%

SSTD 1 0 0 1 DB 1 33%

STRF 0 0 1 1 DB 1 33%

STTGTO 0 1 0 1 APP 1 33%

 83

Module 96-1 96-2 97-1 Grand Total Module Type Release Count Release Percent

STTMGR 1 0 0 1 APP 1 33%

STTMGS 1 0 0 1 APP 1 33%

STTSTT 0 1 0 1 APP 1 33%

TPRM 0 0 1 1 DB 1 33%

TSKSAN 0 1 0 1 APP 1 33%

TSKTFM 0 1 0 1 APP 1 33%

TSKTIN 0 1 0 1 APP 1 33%

TSKTMG 0 1 0 1 APP 1 33%

TSSN 0 0 1 1 DB 1 33%

WMGREM 0 0 1 1 APP 1 33%

b. SPADOC Change Driver Tabulation

Change Object 94-1 96-1 96-2 97-1 Grand Total Release Count Release Pct Exposure Exposure
Percent

display 5 6 22 3 36 4 100% 144 38%

message 11 0 11 6 28 3 75% 84 22%

file 2 2 3 0 7 3 75% 21 6%

menu 1 0 12 0 13 2 50% 26 7%

dialog 3 4 0 0 7 2 50% 14 4%

satellite 0 6 0 1 7 2 50% 14 4%

COTS 0 3 0 3 6 2 50% 12 3%

command 2 0 1 0 3 2 50% 6 2%

element set 0 1 1 0 2 2 50% 4 1%

notification 0 1 0 1 2 2 50% 4 1%

orbit 0 0 1 1 2 2 50% 4 1%

security 0 1 0 1 2 2 50% 4 1%

site 0 7 0 0 7 1 25% 7 2%

baud rate 0 0 2 0 2 1 25% 2 1%

options 0 2 0 0 2 1 25% 2 1%

applications 0 0 1 0 1 1 25% 1 0%

ASAT 0 0 1 0 1 1 25% 1 0%

buffer 0 0 1 0 1 1 25% 1 0%

catalog 1 0 0 0 1 1 25% 1 0%

CIS 0 0 1 0 1 1 25% 1 0%

cluster 0 1 0 0 1 1 25% 1 0%

collision avoidance 1 0 0 0 1 1 25% 1 0%

consistency 0 0 1 0 1 1 25% 1 0%

count 0 1 0 0 1 1 25% 1 0%

decay dates 1 0 0 0 1 1 25% 1 0%

edit 0 1 0 0 1 1 25% 1 0%

ephemeris 0 1 0 0 1 1 25% 1 0%

extrapolation DC 0 0 1 0 1 1 25% 1 0%

folder 0 1 0 0 1 1 25% 1 0%

interface 0 0 1 0 1 1 25% 1 0%

IRONs 0 0 1 0 1 1 25% 1 0%

keyboard 0 0 0 1 1 1 25% 1 0%

 84

Change Object 94-1 96-1 96-2 97-1 Grand Total Release Count Release Pct Exposure Exposure
Percent

keys 0 0 1 0 1 1 25% 1 0%

manuever 0 0 1 0 1 1 25% 1 0%

msg 0 1 0 0 1 1 25% 1 0%

multipliers 0 0 1 0 1 1 25% 1 0%

observation 0 0 0 1 1 1 25% 1 0%

printer 0 0 0 1 1 1 25% 1 0%

projection 0 1 0 0 1 1 25% 1 0%

screen print 1 0 0 0 1 1 25% 1 0%

solar 1 0 0 0 1 1 25% 1 0%

threat 0 0 1 0 1 1 25% 1 0%

vote 0 1 0 0 1 1 25% 1 0%

window 0 1 0 0 1 1 25% 1 0%

Grand Total 29 42 65 19 155

 85

Appendix 2

Volatility Characterization - CCPDS-R

 86

a. CCPDS-R Module Volatility Tabulation

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

DGN_MENU_FORMS 0 4 2 1 2 1 0 10 .ADB 5 71%

ENUMERATED_TYPES 0 0 1 1 7 2 0 11 .DAT 4 57%

USER_CONTROL 0 1 3 4 1 0 0 9 .ADB 4 57%

CMP_PRECALCULATED_AOI_DATA 3 0 1 0 2 2 0 8 .DAT 4 57%

CMP_PRECALCULATED_THREAT_FAN 3 0 1 0 2 1 0 7 .DAT 4 57%

BUILD_DISPLAY_DATABASE 0 0 1 2 1 2 0 6 .COM 4 57%

CMP_LOFT_ANGLE_DATA 1 0 1 0 2 2 0 6 .DAT 4 57%

SSP_MISSION_DATA_COUNTS 0 0 0 1 2 1 2 6 .ADB 4 57%

CMP_GRAZE_BUFFER_PARAMETERS 1 0 1 0 2 1 0 5 .ADB 4 57%

CMP_RELATIVE_MULTIPLE_MIDPOINT_TIC 1 0 1 0 2 1 0 5 .DAT 4 57%

CMP_STRATEGIC_ADAPTATION 0 0 1 2 1 1 0 5 .DAT 4 57%

DGN_GEOGRAPHIC 0 1 2 0 1 1 0 5 .ADB 4 57%

SSP_SEWS_ML_PROCESSING 1 0 0 0 1 1 2 5 .ADB 4 57%

CSD_SYSTEM_CONTROL_PROCEDURES 0 0 1 1 1 1 0 4 .ADB 4 57%

DGN_SCREEN_MANAGER 0 4 5 1 0 0 0 10 .ADB 3 43%

SGI_BASIC_TYPES_ 0 0 0 1 6 3 0 10 .ADS 3 43%

SGI_TABLE_IX_ 0 0 0 3 3 2 0 8 .ADS 3 43%

SGI_DISPLAY_TEXT_ 0 0 0 2 4 1 0 7 .ADS 3 43%

SCN_SYSC_CONNECTIVITY_SITES 0 0 1 0 3 2 0 6 .DAT 3 43%

CMP_DCO_AOI_DB 1 0 1 0 3 0 0 5 .DAT 3 43%

CMP_NMP_AOI_DB 1 0 1 0 3 0 0 5 .DAT 3 43%

CMP_RMP_AOI_DB 1 0 1 0 3 0 0 5 .DAT 3 43%

CMP_SSP_AOI_DB 1 0 1 0 3 0 0 5 .DAT 3 43%

CMT_TOOL_TYPES_ 0 0 0 2 2 1 0 5 .ADS 3 43%

CSD_INIT 0 0 0 2 2 1 0 5 .COM 3 43%

FOM_FOE_OUTPUT_NON_DISCRETE_MESSAGES 0 0 0 1 3 1 0 5 .ADB 3 43%

SCN_OMP_MESSAGE_CATEGORY_FILE 0 0 0 1 3 1 0 5 .DAT 3 43%

SGI_CSSR_FORMAT_IDS_ 0 0 0 2 2 1 0 5 .ADS 3 43%

SGI_DISPLAY_TYPES_ 0 0 0 2 2 1 0 5 .ADS 3 43%

SGI_RECORD_ASSIGNMENT 0 0 0 2 1 0 2 5 .ADB 3 43%

SSP_BASIC_TYPES_ 0 0 0 1 2 0 2 5 .ADS 3 43%

SSP_SEWS_DATABASE_ 0 0 0 1 2 0 2 5 .ADS 3 43%

CCO_MESSAGE_INDEX_NUMBERS 0 0 0 1 2 1 0 4 .DAT 3 43%

CCO_MESSAGE_PRIORITIES 0 0 0 1 2 1 0 4 .DAT 3 43%

CMP_AOI_DATA 1 0 1 0 2 0 0 4 .DAT 3 43%

CMP_CMP_COMPLEX_DB 1 0 1 0 2 0 0 4 .DAT 3 43%

CMP_DCO_COMPLEX_DB 1 0 1 0 2 0 0 4 .DAT 3 43%

CMP_MISSILE_TYPING 1 0 1 0 2 0 0 4 .DAT 3 43%

CMP_WORLD_LAUNCH_COMPLEXES 1 0 1 0 2 0 0 4 .DAT 3 43%

CMT_VIM_BODY_TOOL 0 0 0 1 1 0 2 4 .ADB 3 43%

CSD_RECONFIGURATION_PROCEDURES 0 0 0 1 1 2 0 4 .ADB 3 43%

DGN_FDB_FORMAT_BUILD_UTILITIES 0 0 1 2 1 0 0 4 .ADB 3 43%

FOM_FORMAT_PDS_M1A 0 0 1 1 2 0 0 4 .ADB 3 43%

 87

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

MESSAGE_INPUT_FILE 0 0 0 1 2 1 0 4 .DAT 3 43%

PIM_VIM_MISSION_MESSAGE_DATA 0 0 1 0 1 0 2 4 .ADB 3 43%

SDG_MESSAGE_FORMATTER 1 0 0 1 2 0 0 4 .ADB 3 43%

SGI_CSSR_MESSAGE_IDS_ 0 0 0 1 2 1 0 4 .ADS 3 43%

CCO_SUMMARY_MESSAGE_FORMAT_IDS 0 0 0 1 1 1 0 3 .DAT 3 43%

CMP_SENSOR_LOCATIONS 1 0 0 0 1 1 0 3 .DAT 3 43%

CSD_ERM_ALARM_PROCEDURES 0 0 1 1 1 0 0 3 .ADB 3 43%

CSD_OPERATIONS 0 0 0 1 1 1 0 3 .ADB 3 43%

FOM_CSSR_MESSAGE_HEADER_UTILITIES 0 0 0 1 1 1 0 3 .ADB 3 43%

FOM_FOE_PERIODIC_TYPES_ 0 0 0 1 1 1 0 3 .ADS 3 43%

FOM_FOE_PROCESS_PERIODIC_MESSAGES 0 0 0 1 1 1 0 3 .ADB 3 43%

SCN_SERVICES_PROCESSING 0 0 0 1 1 1 0 3 .ADB 3 43%

SGI_ERROR_CODES 0 0 1 1 1 0 0 3 .ADB 3 43%

USER_CURRENT_SITE_STATUS_POPUP 0 0 1 1 1 0 0 3 .RAW 3 43%

USER_SYSTEM_CONTROL_INTERFACE 0 0 1 1 0 1 0 3 .ADB 3 43%

FOM_FORMAT_ATAMS_STATUS 0 0 0 0 5 3 0 8 .ADB 2 29%

DGN_ALARM_PROCESSOR 0 4 3 0 0 0 0 7 .ADB 2 29%

VMSP_PERF_INTERFACE 0 0 0 0 3 3 0 6 .COM 2 29%

USER_ALARM_PROCESSING 0 0 4 0 0 1 0 5 .ADB 2 29%

USER_WORKSTATION_STATUS 0 0 0 2 0 3 0 5 .ADB 2 29%

FOM_FOE_ACTIONS 0 0 0 1 3 0 0 4 .ADB 2 29%

SCN_PROCESS_KEEPALIVE_MESSAGE 0 0 1 3 0 0 0 4 .ADB 2 29%

SCN_VIM_PROCESSING 0 0 1 3 0 0 0 4 .ADB 2 29%

CMT_LTD_LOAD_DCO_DISPLAY 0 0 0 2 1 0 0 3 .ADB 2 29%

CSD_INITIALIZATION 0 0 0 1 2 0 0 3 .ADB 2 29%

DGN_CONFIGURATION 0 0 0 2 0 1 0 3 .ADB 2 29%

DGN_MENU_TYPES_ 0 0 0 2 1 0 0 3 .ADS 2 29%

FDB_UTILITIES 0 0 0 1 0 0 2 3 .ADB 2 29%

FOM_FORMAT_FORWARD_USERS_AN26 0 0 1 0 2 0 0 3 .ADB 2 29%

FOM_FORMAT_PDS_M2 0 0 0 2 1 0 0 3 .ADB 2 29%

NMP_BASIC_TYPES_ 0 0 0 0 1 0 2 3 .ADS 2 29%

NMP_NUDET_DATABASE_ 0 0 0 0 1 0 2 3 .ADS 2 29%

NMP_SATELLITE_NUDET_PROCESSING 0 0 0 0 1 0 2 3 .ADB 2 29%

PIM_VIM_KEEPALIVE_PROCESSING 0 0 1 0 2 0 0 3 .ADB 2 29%

PIM_VIM_SEWS_ML_EVENT_MESSAGE 0 0 1 0 0 0 2 3 .ADB 2 29%

PIM_VIM_SEWS_MLU_EVENT_MESSAGE 0 0 1 0 0 0 2 3 .ADB 2 29%

RMP_RADAR_DATABASE 0 0 2 0 1 0 0 3 .ADB 2 29%

RMP_RMP_RADAR_TASK_COMP 0 0 0 2 1 0 0 3 .ADB 2 29%

SDG_LOAD_DATABASE_FILES 1 0 0 0 2 0 0 3 .ADB 2 29%

SGI_FUSED_DATABASE_ 0 0 0 0 2 1 0 3 .ADS 2 29%

SSP_INITIALIZE_IDB_DATA 0 0 0 1 0 0 2 3 .ADB 2 29%

SSP_REPAIR_THREAD 0 0 0 1 0 0 2 3 .ADB 2 29%

SSP_SEWS_DATABASE 0 0 0 1 0 0 2 3 .ADB 2 29%

SSP_SEWS_R_PROCESSING 0 0 0 0 0 1 2 3 .ADB 2 29%

STARTUP_SHADOW_TWAA1 0 0 0 0 1 2 0 3 .RCF 2 29%

STARTUP_SHADOW_TWAA2 0 0 0 0 1 2 0 3 .RCF 2 29%

USER_ALARM_ASSIGNMENT_SUMMARY_MWC 0 0 1 0 0 2 0 3 .RAW 2 29%

 88

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

ARCH_MONITOR_LOG_PROCEDURES 0 0 0 1 1 0 0 2 .ADB 2 29%

ARCH_MONITOR_LOG_PROCEDURES_ 0 0 0 1 1 0 0 2 .ADS 2 29%

CCPDSR_SOFTWARE_VERSION 1 1 0 0 0 0 0 2 .DAT 2 29%

CCS_GEOGRAPHIC_SEARCH 1 0 0 0 1 0 0 2 .ADB 2 29%

CMP_LORIG_CHAR_DB 1 0 0 0 1 0 0 2 .DAT 2 29%

CMP_LORIG_LATITUDE_DB 1 0 0 0 1 0 0 2 .DAT 2 29%

CMP_LORIG_LONGITUDE_DB 1 0 0 0 1 0 0 2 .DAT 2 29%

CMP_MISSILE_INVENTORY 0 0 1 1 0 0 0 2 .DAT 2 29%

CONI_CONFIGURATION_PROCESSING 0 0 0 1 0 1 0 2 .ADB 2 29%

CREATE_VXT_TERMINAL_ACCOUNT 0 0 0 0 1 1 0 2 .COM 2 29%

CSD_CONFIGURE_SYSTEM 0 0 0 1 1 0 0 2 .ADB 2 29%

CSD_CREATE_SUBSYSTEM_SENSOR_STATUS_MENU 0 0 1 0 1 0 0 2 .ADB 2 29%

CSD_INTERNAL_STRUCTURES_ 0 0 0 1 1 0 0 2 .ADS 2 29%

CSD_MONITOR_LOG_PROCEDURES 0 0 0 1 0 1 0 2 .ADB 2 29%

CSD_SYSTEM_CONTROL_PROCEDURES_ 0 0 0 1 1 0 0 2 .ADS 2 29%

DGN_FIELD_CONTROL_IO 0 0 0 0 1 1 0 2 .ADB 2 29%

DGN_FORMAT_BUILD_TYPES_ 0 0 0 1 1 0 0 2 .ADS 2 29%

DGN_GEOGRAPHIC_ 0 1 0 0 1 0 0 2 .ADS 2 29%

DGN_IR_COVERAGES 0 0 0 0 1 1 0 2 .DAT 2 29%

DGN_MAP_GENERATOR 0 1 0 0 1 0 0 2 .ADB 2 29%

DGN_MENU_UTILITIES 0 0 1 0 1 0 0 2 .ADB 2 29%

DISP_TASK_INIT 0 0 0 1 1 0 0 2 .COM 2 29%

FIL_CSSR_FORMAT_IDS_ 0 0 0 1 1 0 0 2 .ADS 2 29%

FIL_PDS_FORMAT_IDS_ 0 0 0 1 1 0 0 2 .ADS 2 29%

FIL_SAC_FORMAT_IDS_ 0 0 0 1 1 0 0 2 .ADS 2 29%

FIL_UPDATE_SCENARIO_TIMES 0 0 0 1 1 0 0 2 .ADB 2 29%

FOM_FOE_BASIC_TYPES_ 0 0 0 1 0 1 0 2 .ADS 2 29%

FOM_FORMAT_ATAMS_STATUS_ 0 0 0 0 1 1 0 2 .ADS 2 29%

FOM_FORMAT_FORWARD_USERS_AU09 0 0 1 0 1 0 0 2 .ADB 2 29%

FOM_FORMAT_PDS_M17 0 0 0 1 0 1 0 2 .ADB 2 29%

FOM_FORMAT_PDS_M1B 0 0 0 1 0 1 0 2 .ADB 2 29%

FOM_FORMAT_PDS_M3 0 0 0 1 1 0 0 2 .ADB 2 29%

FOM_FORMAT_PDS_M5B 0 0 1 1 0 0 0 2 .ADB 2 29%

FOM_FORMAT_PDS_N2 0 0 0 1 1 0 0 2 .ADB 2 29%

FOM_FORMAT_PDS_T1 0 0 1 1 0 0 0 2 .ADB 2 29%

GAC_PROCESS_TEMPLATE 0 0 0 1 0 1 0 2 .ADB 2 29%

GAC_TYPES_ 0 0 0 0 1 1 0 2 .ADS 2 29%

INJP_MESSAGE_INJECTION 0 0 1 0 0 1 0 2 .ADB 2 29%

M2_MISSILE_LAUNCH_SUMMARY_CM07 0 0 0 1 1 0 0 2 .OUT 2 29%

MCIO_PUT_BASIC_UTILITIES 0 0 0 0 1 1 0 2 .ADB 2 29%

PIM_VIM_ACTION_A 0 0 1 1 0 0 0 2 .ADB 2 29%

PIM_VIM_START_UP 0 0 1 0 1 0 0 2 .DAT 2 29%

QPR_ANALYSIS_SQL_SUPPORT 0 0 0 1 1 0 0 2 .SQLMO
D

2 29%

QPR_SENSOR_SQL_SUPPORT 0 0 0 1 1 0 0 2 .SQLMO
D

2 29%

QPR_SQL_SUPPORT 0 0 0 1 1 0 0 2 .SQLMO
D

2 29%

RESUME_REAL_EXTERNAL_INPUTS 0 0 0 1 0 1 0 2 .INC 2 29%

 89

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

RMP_TIME_TO_IMPACT 0 0 0 0 1 1 0 2 .ADB 2 29%

SAS_TASKS 0 0 0 1 0 1 0 2 .DAT 2 29%

SCN_APPLICATION_PROCESSING 0 0 1 0 0 1 0 2 .ADB 2 29%

SCN_SYSC_DATA_ 0 0 0 0 1 1 0 2 .ADS 2 29%

SCN_SYSC_NETWRK_CONTROL_TASK_COMP 0 0 0 0 1 1 0 2 .ADB 2 29%

SGI_MCIO_STATUS_MESSAGE_ 0 0 0 0 1 1 0 2 .ADS 2 29%

SHUTDOWN_NETWORK 0 0 0 1 0 1 0 2 .RCF 2 29%

SPM_TASK_INIT 0 0 0 1 1 0 0 2 .COM 2 29%

SSP_READ_MISSILE_TYPING 1 0 0 1 0 0 0 2 .ADB 2 29%

SSP_TASK_INIT 0 0 0 1 1 0 0 2 .COM 2 29%

SUSPEND_REAL_EXTERNAL_INPUTS 0 0 0 1 0 1 0 2 .INC 2 29%

TAS_INPUT_FILE 0 0 0 1 1 0 0 2 .DAT 2 29%

USER_CMAFB_SYSTEM_STATUS_RELATED 0 0 1 0 1 0 0 2 .RAW 2 29%

USER_DISP_DISPLAYS_TASK_COMP 0 0 0 1 0 1 0 2 .ADB 2 29%

USER_INTEGRATED_ATTACK_SUMMARY_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_LAUNCH_ORIGIN_SUMMARY 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_MISSILE_ATTACK_SUMMARY_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_NORAD_NUDET_ASSESSMENT_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_NORAD_REFINED_RADAR_COMPOSIT_F92 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_NUDET_ASSESSMENT_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_NUDET_SITUATION_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_OPCC_SYSTEM_STATUS_RELATED 0 0 1 0 1 0 0 2 .RAW 2 29%

USER_REFINED_RADAR_COMPOSITE_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_SENSOR_SITUATION_RELATED 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_STRATEGIC_MOB_SUMMARY 0 0 0 1 1 0 0 2 .RAW 2 29%

USER_STRATEGIC_SUMMARY 0 0 0 1 1 0 0 2 .RAW 2 29%

PIM_VIM_RADAR_CAPABILITY 0 0 0 4 0 0 0 4 .ADB 1 14%

SDG_EVENT_MESSAGE_GENERATOR 0 0 0 0 4 0 0 4 .ADB 1 14%

CONI_PROCESS_GSM_INJ_MESSAGE 0 0 0 3 0 0 0 3 .ADB 1 14%

DGN_ALARM_PROCESSOR_ 0 3 0 0 0 0 0 3 .ADS 1 14%

DGN_SCREEN_MANAGER_ 0 3 0 0 0 0 0 3 .ADS 1 14%

GENB_MC_CONSTRUCT_ASCII_DATA 0 0 0 3 0 0 0 3 .ADB 1 14%

SDG_MESSAGE_TIME_ORDERING 0 0 0 0 3 0 0 3 .ADB 1 14%

SDG_STATISTICS_POST_PROCESSOR 0 0 0 0 3 0 0 3 .ADB 1 14%

USER_DIRECT_RADAR_SITE_STATUS 0 0 0 3 0 0 0 3 .RAW 1 14%

VXT_TERM_LOGIN 0 0 0 0 3 0 0 3 .COM 1 14%

CDT_THREAT_FAN_GRAPHICS 0 0 0 0 2 0 0 2 .ADB 1 14%

CMP_LORIG_ADAPTATION 0 0 0 0 2 0 0 2 .DAT 1 14%

CMT_VIM_SPEC_TOOL 0 0 0 0 0 0 2 2 .ADB 1 14%

CONR_RUNTIME_CONTROL 0 0 2 0 0 0 0 2 .ADB 1 14%

COR_STATUS_ALARM 0 0 0 0 0 2 0 2 .ADB 1 14%

CSO_LOGIN 0 0 0 0 2 0 0 2 .COM 1 14%

DECW$CSO_TERM 0 0 0 0 2 0 0 2 .DAT 1 14%

DECW$ENDSESSION 0 0 0 0 2 0 0 2 .DAT 1 14%

DECW$MWM 0 0 0 0 2 0 0 2 .DAT 1 14%

DECW$MWM_RC 0 0 0 0 2 0 0 2 .DAT 1 14%

DRD_VIEW_REAL_MESSAGE 0 0 0 0 0 0 2 2 .ADB 1 14%

 90

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

FOM_FORMAT_PDS_M11 0 0 0 2 0 0 0 2 .ADB 1 14%

GDS_KEEP_ALIVE_YZ31 0 0 0 0 2 0 0 2 .INB 1 14%

GENB_MC_CONSTRUCT_MESSAGE_CONTENTS 0 0 0 2 0 0 0 2 .ADB 1 14%

GENB_MC_RETRIEVE_ASCII_DATA 0 0 0 2 0 0 0 2 .ADB 1 14%

GENB_MC_RETRIEVE_MESSAGE_CONTENTS 0 0 0 2 0 0 0 2 .ADB 1 14%

GENB_MC_RETRIEVE_MESSAGE_DEFAULTS 0 0 0 2 0 0 0 2 .ADB 1 14%

GENB_MESSAGE_CONTENTS 0 0 0 2 0 0 0 2 .ADB 1 14%

GENB_PROCESS_GSM_INJ_MESSAGE 0 0 0 2 0 0 0 2 .ADB 1 14%

GENU_EP_PROCESS_DISTRIBUTED_CONTENTS 0 0 0 2 0 0 0 2 .ADB 1 14%

MCIO_PUT_QUEUE_UTILITIES 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTION_CK 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTION_CR 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTION_IT 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTION_K 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTION_KR 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTION_T 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTIONS 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ACTIONS_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PIM_VIM_CHECK_INBOUND_TASK_COMP 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_DISPOSITION_PROCESSING 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_DUP_MESSAGES 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_DUP_MESSAGES_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PIM_VIM_ICADS_EVENT_MESSAGE 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_ICADS_EVENT_MESSAGE_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PIM_VIM_MESSAGE_HANDLER 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_MESSAGE_HANDLER_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PIM_VIM_NUDET_EVENT_MESSAGE 0 0 0 0 0 0 2 2 .ADB 1 14%

PIM_VIM_NUDET_EVENT_MESSAGE_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PIM_VIM_SEWS_ML_EVENT_MESSAGE_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PIM_VIM_SEWS_MLU_EVENT_MESSAGE_ 0 0 0 0 0 0 2 2 .ADS 1 14%

PMP_PROCESS_FIELD_BINARY 0 0 0 0 0 2 0 2 .ADB 1 14%

PMP_WRITE_MESSAGE_LOG 0 0 0 0 0 0 2 2 .ADB 1 14%

QPR_ANALYSIS_INTERFACE 0 0 0 2 0 0 0 2 .ADB 1 14%

QPR_ANALYSIS_SQL_SUPPORT_ 0 0 0 2 0 0 0 2 .ADS 1 14%

QPR_CREATE_VIEWS 0 0 0 2 0 0 0 2 .ADB 1 14%

QPR_CREATE_VIEWS_SQL_ 0 0 0 2 0 0 0 2 .ADS 1 14%

QPR_DATA_ANALYSIS 0 0 0 2 0 0 0 2 .ADB 1 14%

QPR_DATA_REDUCTION 0 0 0 2 0 0 0 2 .ADB 1 14%

QPR_DATA_REDUCTION_INTERFACE_ 0 0 0 2 0 0 0 2 .ADS 1 14%

QPR_INTERNAL_STRUCTURES_ 0 0 0 2 0 0 0 2 .ADS 1 14%

QPR_OPERATIONS 0 0 0 2 0 0 0 2 .ADB 1 14%

QPR_PROCESS 0 0 0 2 0 0 0 2 .ADB 1 14%

QPR_SQL_SUPPORT_ 0 0 0 2 0 0 0 2 .ADS 1 14%

RTR_RECORDING_TYPES 0 0 0 0 0 0 2 2 .ADB 1 14%

RTR_RTAD_RECORDING_TASK_COMP 0 0 0 0 0 0 2 2 .ADB 1 14%

RTR_RTRD_RECORDING_TASK_COMP 0 0 0 0 2 0 0 2 .ADB 1 14%

SCN_OMP_ACTION_C 0 0 0 0 0 0 2 2 .ADB 1 14%

 91

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

SCN_OMP_GLOBAL_VARIABLES 0 0 0 0 0 2 0 2 .ADB 1 14%

SCN_SYSC_NETWRK_CONTROL_TASR_COMP 0 0 0 0 0 2 0 2 .ADB 1 14%

SCN_SYSC_TYPES_ 0 0 0 0 0 2 0 2 .ADS 1 14%

SDG_LOAD_DATABASE_FILES_ 0 0 0 0 2 0 0 2 .ADS 1 14%

SDG_MISSION_GENERATOR 0 0 0 0 2 0 0 2 .ADB 1 14%

SGI_BASIC_TYPES 0 0 2 0 0 0 0 2 .ADB 1 14%

SGI_CSSR_INTERFACE_MESSAGE_ 0 0 0 0 0 0 2 2 .ADS 1 14%

SGI_DISPLAY_TEXT 0 0 2 0 0 0 0 2 .ADB 1 14%

SGI_RESET_DUPLICATE_MESSAGE_ 0 0 0 0 0 0 2 2 .ADS 1 14%

SGI_TABLE_IX 0 0 2 0 0 0 0 2 .ADB 1 14%

SSP_READ_AREA_OF_INTEREST_POINTS 0 0 0 0 2 0 0 2 .ADB 1 14%

SSP_SSP_SEWS_TASK_COMP 0 0 0 2 0 0 0 2 .ADB 1 14%

START_LOGIN 0 0 0 0 2 0 0 2 .COM 1 14%

TDBA_DATABASE_ACCESS_ 0 0 0 2 0 0 0 2 .ADS 1 14%

USER_SUMMARY_DATA_MENU 0 0 0 2 0 0 0 2 .RAW 1 14%

USER_SYSTEM_SUMMARY 0 0 0 0 0 2 0 2 .RAW 1 14%

ARCH_CONTROL_PROCEDURES 0 0 0 1 0 0 0 1 .ADB 1 14%

ARCH_CONTROL_PROCEDURES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

ARCH_TASK_INIT 0 0 0 1 0 0 0 1 .COM 1 14%

ARCHIVE_CONTROL_TASK_COMP 0 0 0 1 0 0 0 1 .ADB 1 14%

ARCN_INTERNAL_STRUCTURES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

CCO_APCC_ADDRESSES_OPERATIONAL 0 0 0 0 1 0 0 1 .DAT 1 14%

CCO_CMAFB_ADDRESSES_OPERATIONAL 0 0 0 0 1 0 0 1 .DAT 1 14%

CCO_MAP_DESTINATION_TO_LL 0 0 0 0 1 0 0 1 .DAT 1 14%

CCO_TDTC_ADDRESSES_OPERATIONAL 0 0 0 0 1 0 0 1 .DAT 1 14%

CCPDSR_STATUS_KS01 0 0 0 0 1 0 0 1 .OUT 1 14%

CCPDSR_STATUS_REEP_ALIVE_KS02 0 0 0 0 0 1 0 1 .OUT 1 14%

CCS_GEOGRAPHIC_SEARCH_ 0 0 0 0 1 0 0 1 .ADS 1 14%

CDT_AOI_BUILD_PROCEDURES 0 0 0 0 1 0 0 1 .ADB 1 14%

CDT_AOI_MAPPING 1 0 0 0 0 0 0 1 .DAT 1 14%

CFG_NAS_MESSAGE_INFORMATION_ 0 0 0 1 0 0 0 1 .ADS 1 14%

CMN_DEV_TO_OPERATIONAL 0 0 0 1 0 0 0 1 .COM 1 14%

CMP_LORIG_APE_DB 1 0 0 0 0 0 0 1 .DAT 1 14%

CMP_TRD_COORDINATE_DB 0 0 0 0 1 0 0 1 .DAT 1 14%

CMP_TRD_COUNTRY_DB 0 0 0 0 1 0 0 1 .DAT 1 14%

CMP_TRD_SEGMENT_DB 0 0 0 0 1 0 0 1 .DAT 1 14%

CMT_LTD_LOAD_FIELD_DEFINIT1ON 0 0 0 1 0 0 0 1 .ADB 1 14%

CMT_LTD_LOAD_FIELD_DEFINITION_ 0 0 0 1 0 0 0 1 .ADS 1 14%

CMT_SGI_WRITE_SPEC_FOM 0 0 0 0 1 0 0 1 .ADB 1 14%

CMT_TOOL_VIM_MAKE_ENUMERATION_BOTH 0 0 0 1 0 0 0 1 .ADB 1 14%

CMT_VIM_ROUTINES 0 0 0 1 0 0 0 1 .ADB 1 14%

COMPLEX 0 0 0 0 1 0 0 1 .INPU
T

1 14%

CONI_CONI_INITIATION_TASK_COMP 0 0 1 0 0 0 0 1 .ADB 1 14%

CONI_CONI_INITIATION_TASR_COMP 0 0 0 0 0 1 0 1 .ADB 1 14%

CONI_SCENARIO_INITIATION 0 0 1 0 0 0 0 1 .ADB 1 14%

CONI_START_PROCESSING 0 0 1 0 0 0 0 1 .ADB 1 14%

 92

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

CONR_BUILD_EXECUTION_CONTROL_DISPLAY 0 0 1 0 0 0 0 1 .ADB 1 14%

CONR_REPOSITION_SCENARIO 0 0 1 0 0 0 0 1 .ADB 1 14%

COR_CONTROL_PROCESSING 0 0 0 0 0 1 0 1 .ADB 1 14%

COR_DATA_MAINTENANCE 0 0 0 0 0 1 0 1 .ADB 1 14%

COR_ROUTING 0 0 0 0 0 1 0 1 .ADB 1 14%

COR_TYPES_ 0 0 0 0 0 1 0 1 .ADS 1 14%

CSD_CANCEL_DATA_RECORDING_CHANGES 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_CANCEL_MESSAGE_PRINTING_CHANGES 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_CONFIRM_TAPE_NOTIFICATION 0 0 0 1 0 0 0 1 .ADB 1 14%

CSD_CREATE_HARDWARE_STATUS_MENU 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_CREATE_HARDWARE_STATUS_SUBMENU 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_CREATE_PRINTABLE_MESSAGES_MENU 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_CREATE_RECORDABLE_DATA_MENU 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_ERM_ALARM_PROCEDURES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

CSD_INITIALIZATION_ 0 0 0 0 1 0 0 1 .ADS 1 14%

CSD_MENUS 0 0 0 0 1 0 0 1 .ADB 1 14%

CSD_MENUS_ 0 0 0 1 0 0 0 1 .ADS 1 14%

CSD_MONITOR_LOG_PROCEDURES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

CSD_OPERATIONS_ 0 0 0 1 0 0 0 1 .ADS 1 14%

CSD_PROCESS_KEYBOARD_INPUT 0 0 0 1 0 0 0 1 .ADB 1 14%

CSD_RECONFIGURATION_PROCEDURES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

DECW$5MB_WINDOW_COLOR 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$CSSO_TERM 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$DRD_TERM 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$IWO_TERM 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$SMB_BACKGROUND 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$SMB_BACKGROUND_COLOR 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$SMB_WINDOW 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$VMSP_TERM 0 0 0 0 1 0 0 1 .DAT 1 14%

DECW$WSO_TERM 0 0 0 0 1 0 0 1 .DAT 1 14%

DGN_BOUNDARY_POINTS 0 0 0 0 1 0 0 1 .DAT 1 14%

DGN_BUFFER_TYPES_ 0 1 0 0 0 0 0 1 .ADS 1 14%

DGN_CONFIGURATION_ 0 0 0 1 0 0 0 1 .ADS 1 14%

DGN_DISPLAY_DATABASE_IO 0 0 0 0 1 0 0 1 .ADB 1 14%

DGN_FDB_DATA_STRING 0 0 0 1 0 0 0 1 .ADB 1 14%

DGN_FORMAT_BUILD 0 0 0 0 1 0 0 1 .ADB 1 14%

DGN_FORMAT_BUILD_TYPES 0 0 1 0 0 0 0 1 .ADB 1 14%

DGN_GKS_ESCAPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

DGN_GRAPHICS_INTERFACE 0 1 0 0 0 0 0 1 .ADB 1 14%

DGN_GRAPHICS_INTERFACE_ 0 1 0 0 0 0 0 1 .ADS 1 14%

DGN_IR_COVERAGE 1 0 0 0 0 0 0 1 .DAT 1 14%

DGN_MAP_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

DGN_MAPFIL 0 0 0 0 1 0 0 1 .DAT 1 14%

DGN_MENU_FORMS_ 0 1 0 0 0 0 0 1 .ADS 1 14%

DGN_MOVE_DATABASE_VALUE 0 0 0 1 0 0 0 1 .ADB 1 14%

DGN_POLFIL 0 0 0 0 1 0 0 1 .DAT 1 14%

DGN_PROCESS_FIELD_DATA_LIST 0 0 0 1 0 0 0 1 .ADB 1 14%

 93

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

DGN_RECORD_TEXT_IO 0 0 0 0 1 0 0 1 .ADB 1 14%

DGN_SINO_SOVIET_REGIONS 0 0 0 0 1 0 0 1 .DAT 1 14%

DGN_SMGR_SCREEN_TASK_COMP 0 0 0 1 0 0 0 1 .ADB 1 14%

DGN_SYMBOL_TABLE 0 1 0 0 0 0 0 1 .ADB 1 14%

DGN_SYMBOL_TABLE_ 0 1 0 0 0 0 0 1 .ADS 1 14%

DGN_TRD_POINTS 0 0 0 0 1 0 0 1 .DAT 1 14%

DGN_WINDOW_MANAGEMENT 0 1 0 0 0 0 0 1 .ADB 1 14%

DGN_WINDOW_TYPES_ 0 1 0 0 0 0 0 1 .ADS 1 14%

DMG_RETRIEVAL_SERVICES 0 0 0 0 1 0 0 1 .ADB 1 14%

DRD_DO_ACTIONS 0 0 0 0 1 0 0 1 .ADB 1 14%

DRD_GLOBALS_ 0 0 0 0 1 0 0 1 .ADS 1 14%

DRD_MENUS 0 0 0 0 1 0 0 1 .ADB 1 14%

DRD_MENUS_ 0 0 0 0 1 0 0 1 .ADS 1 14%

DRD_OPERATIONS 0 0 0 0 1 0 0 1 .ADB 1 14%

DRD_PROCESS 0 0 0 0 1 0 0 1 .ADB 1 14%

DRD_PROCESS_OPERATOR_ACTION_LOG 0 0 0 0 0 1 0 1 .ADB 1 14%

DRD_PROCESS_SYSTEM_REPORT 0 0 0 0 1 0 0 1 .ADB 1 14%

DRD_PROCESS_SYSTEM_REPORT_ 0 0 0 0 1 0 0 1 .ADS 1 14%

ERM_DATABASE 0 0 0 1 0 0 0 1 .ADB 1 14%

ERM_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

FDB_INITIALIZE_DATABASE 0 0 0 0 1 0 0 1 .ADB 1 14%

FDB_INITIALIZE_REMOTE_PROCESS 0 0 0 1 0 0 0 1 .ADB 1 14%

FDB_MASTER_SERVICES 0 0 0 1 0 0 0 1 .ADB 1 14%

FDB_MESSAGES 0 0 0 1 0 0 0 1 .ADB 1 14%

FDB_MESSAGES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

FDB_READ_SERVICES 0 0 0 1 0 0 0 1 .ADB 1 14%

FDB_READ_SERVICES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

FDB_RECEIVE_FDB_UPDATE 0 0 0 1 0 0 0 1 .ADB 1 14%

FDB_WRITE_SERVICES 0 0 0 1 0 0 0 1 .ADB 1 14%

FDB_WRITE_SERVICES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

FOM_FOE_ACTION_M 0 0 0 0 0 1 0 1 .ADB 1 14%

FOM_FOE_ACTION_T 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FOE_ACTIONS_X 0 0 0 0 1 0 0 1 .ADB 1 14%

FOM_FOE_COMMON_UTILITIES 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FOE_PROCESS_DISCRETE_CHANGES 0 1 0 0 0 0 0 1 .ADB 1 14%

FOM_FOE_PROCESS_NON_DISCRETE_CHANGES 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FOE_READ_FDB_CHANGES 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FOE_READ_FDB_NON_DISCRETE 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_FORWARD_USERS_AU08 0 0 1 0 0 0 0 1 .ADB 1 14%

FOM_FORMAT_FORWARD_USERS_AUO9 0 0 0 0 1 0 0 1 .ADB 1 14%

FOM_FORMAT_FORWARD_USERS_MT02 0 0 0 0 0 1 0 1 .ADB 1 14%

FOM_FORMAT_PDS_A1 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_A2 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_C1C 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_C3 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_C4 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_I1 0 0 0 1 0 0 0 1 .ADB 1 14%

 94

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

FOM_FORMAT_PDS_I4 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M10 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M11_ 0 0 0 1 0 0 0 1 .ADS 1 14%

FOM_FORMAT_PDS_M12 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M13 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M14 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M15 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M16 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M4 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M5A 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M6 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_M78? 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_N3 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_N5 0 0 0 1 0 0 0 1 .ADB 1 14%

FOM_FORMAT_PDS_T2 0 0 0 1 0 0 0 1 .ADB 1 14%

GENB_MC_INJECT_MESSAGE 0 0 0 1 0 0 0 1 .ADB 1 14%

GENU_CR_RETRIEVE_RECORDED_MESSAGES 0 0 0 1 0 0 0 1 .ADB 1 14%

INITIALIZE_NETWORK 0 0 0 0 0 1 0 1 .INI 1 14%

INITIALIZE_NETWORR 0 0 0 0 0 1 0 1 .INI 1 14%

INJP_INJECTION_PROCESSING 0 0 1 0 0 0 0 1 .ADB 1 14%

INM_CONFIGURE_SYSTEM 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_CREATE_MENU_DISPLAY 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_DISPLAY_COLORS 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_DISPLAY_COLORS_ 0 0 0 0 1 0 0 1 .ADS 1 14%

INM_ERM_PROCEDURES 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_INITIALIZATION 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_MENU_DEFINITION 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_MENU_PROCESSING 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_NMO_MENUS 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_OPERATIONS 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_RECONFIGURATION_PROCEDURES 0 0 0 0 1 0 0 1 .ADB 1 14%

INM_USI_PROCEDURES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

INW_MENUS 0 0 1 0 0 0 0 1 .ADB 1 14%

ITC_NODE_MANAGER 0 0 0 1 0 0 0 1 .ADB 1 14%

ITC_WATCHDOG_PROCEDURES 0 0 0 1 0 0 0 1 .ADB 1 14%

ITC_WATCHDOG_PROCEDURES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

LAUNCH_SUMMARY_COUNTS_CC10 0 0 0 1 0 0 0 1 .CCC 1 14%

LAUNCH_SUMMARY_COUNTS_CC1O 0 0 0 1 0 0 0 1 .CCC 1 14%

M11_DETAILED_MOB_CM15 0 0 0 1 0 0 0 1 .OUT 1 14%

M17_REENTRY_REPORT_CM21 0 0 0 0 0 1 0 1 .OUT 1 14%

M3_MISSILE_ATTACK_SUMMARY_CM08 0 0 0 0 1 0 0 1 .OUT 1 14%

MCIO_MCS_BASIC_UTILITIES 0 0 0 0 0 1 0 1 .ADB 1 14%

MCIO_MCS_MAS_REAL_ACTION_ROUTINES 0 0 0 0 0 1 0 1 .ADB 1 14%

MCIO_PUT_BASIC_UTILITIES_ 0 0 0 0 0 1 0 1 .ADS 1 14%

MCIO_PUT_DI_ACTION_ROUTINES 0 0 0 0 0 1 0 1 .ADB 1 14%

MCIO_PUT_GLOBAL_DATA_ 0 0 0 0 0 1 0 1 .ADS 1 14%

MCIO_PUT_GLOBAL_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

 95

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

N2_NUDET_SUMMARY_CM31 0 0 0 0 1 0 0 1 .OUT 1 14%

NAS_INSTALL 0 0 0 0 0 1 0 1 .COM 1 14%

NETWORK_PROCESS_DEFINITION 0 0 0 0 0 1 0 1 .INC 1 14%

NMP_NMP_NUDET_TASK_COMP 0 0 0 1 0 0 0 1 .ADB 1 14%

NMP_NUDET_DATABASE 0 0 0 0 1 0 0 1 .ADB 1 14%

NUT_SCREEN_MANAGEMENT 0 0 0 0 1 0 0 1 .ADB 1 14%

NUT_SCREEN_MANAGEMENT_ 0 0 0 0 1 0 0 1 .ADS 1 14%

OMP_TASK_INIT 0 0 0 0 0 1 0 1 .COM 1 14%

OMP_TASR_INIT 0 0 0 0 0 1 0 1 .COM 1 14%

OPERATIONAL_A9_REPUBLIC_SORTED 0 0 0 0 1 0 0 1 .INPU
T

1 14%

OPERATIONAL_ALL_INTEGRITY_SORTED 0 0 0 0 1 0 0 1 .INPU
T

1 14%

OPERATIONAL_BLUE_LAUNCHES_SCENARIO 0 0 0 0 1 0 0 1 .INPU
T

1 14%

OPERATIONAL_STATUS_CC03 0 0 1 0 0 0 0 1 .CCC 1 14%

PIM_VIM_ACTION_E 0 0 1 0 0 0 0 1 .ADB 1 14%

PIM_VIM_ACTION_R 0 0 1 0 0 0 0 1 .ADB 1 14%

PIM_VIM_GET_SENSOR_SOURCE_ 0 0 0 0 1 0 0 1 .ADS 1 14%

PIM_VIM_GET_SOURCE 0 0 1 0 0 0 0 1 .ADB 1 14%

PIM_VIM_ITC_UTILITIES 0 0 0 1 0 0 0 1 .ADB 1 14%

PIM_VIM_ITC_UTILITIES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

PIM_VIM_QUICK_ALERT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

PIM_VIM_QUICK_LOOK_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

PIM_VIM_RADAR_CAPABILITY_ 0 0 0 1 0 0 0 1 .ADS 1 14%

PIM_VIM_SEWS_MS_EVENT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

PIM_VIM_SEWS_R_EVENT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

PMP_FORMAT_IDS_FOR_TIME_VAL 0 0 0 0 1 0 0 1 .DAT 1 14%

PMP_MUT_UNIQUE_VALIDATION 0 0 0 0 0 1 0 1 .ADB 1 14%

PMP_MUT_UNIQUE_VALIDATION_ 0 0 0 0 0 1 0 1 .ADS 1 14%

PROCESS_WATCHDOG_LOGICALS 0 0 0 1 0 0 0 1 .COM 1 14%

PSDC$SCHEDULE 0 0 0 0 0 1 0 1 .DAT 1 14%

QPR_BUILD_SQL 0 0 0 0 1 0 0 1 .COM 1 14%

QPR_SENSOR_SQL_SUPPORT_ 0 0 0 1 0 0 0 1 .ADS 1 14%

QPR_SQL_CREATE 0 0 0 0 1 0 0 1 .SQLMO
D

1 14%

RADAR_LAUNCU_EVENT_CC25 0 0 0 1 0 0 0 1 .CCC 1 14%

RMP_BASIC_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

RMP_RADAR_DATABASE_ 0 0 0 0 1 0 0 1 .ADS 1 14%

RMP_THREAT_NONTHREAT 0 0 1 0 0 0 0 1 .ADB 1 14%

RTR_CALCULATE_STORAGE 0 0 0 0 1 0 0 1 .ADB 1 14%

RTR_RECORDING_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

RTR_TERMINATE_RECORDABLE 0 0 0 0 1 0 0 1 .ADB 1 14%

SAS_ETC_LINK 0 0 0 1 0 0 0 1 .CMNLN
K

1 14%

SAS_NODES 0 0 0 0 0 1 0 1 .DAT 1 14%

SAS_PROCESSES 0 0 0 1 0 0 0 1 .DAT 1 14%

SCN_ERROR_PROCESSING 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_OMP_ACTION_A 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_OMP_ACTION_B 0 0 0 0 0 1 0 1 .ADB 1 14%

 96

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

SCN_OMP_ACTION_G 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_OMP_BANNER 0 0 0 1 0 0 0 1 .DAT 1 14%

SCN_OMP_GLOBAL_VARIABLES_ 0 0 0 0 0 1 0 1 .ADS 1 14%

SCN_OMP_PRINT_COMMAND 0 0 0 0 1 0 0 1 .COM 1 14%

SCN_OMP_PRINT_MESSAGE_TASR_COMP 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_OMP_PRINT_MESSAGES_TASK_COMP 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_PROCESS_FLOW_CONTROL 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_PROCESS_MCIO_STATUS 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_PROCESS_SYSTEM_MODE 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_PROCESS_TEST_CONTROL 0 0 0 0 0 1 0 1 .ADB 1 14%

SCN_SYSC_DATA 0 0 1 0 0 0 0 1 .ADB 1 14%

SCN_SYSC_READ_CONNECTIVITY_SITES 0 0 1 0 0 0 0 1 .ADB 1 14%

SDG_2XJCS 0 0 0 0 1 0 0 1 .INPU
T

1 14%

SDG_BASIC_TYPES 0 0 0 0 1 0 0 1 .ADB 1 14%

SDG_DATABASE_DEFINITIONS_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SDG_LORIG_ALGORITHM_LIBRARY 0 0 0 0 1 0 0 1 .ADB 1 14%

SDG_LORIG_ALGORITHM_LIBRARY_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SDG_LORIG_DATABASE_DEFINITIONS_ 1 0 0 0 0 0 0 1 .ADS 1 14%

SDG_PHYSICAL_CONSTANTS 0 0 0 0 1 0 0 1 .ADB 1 14%

SDG_SAT_SENSOR_CORR 0 0 0 0 1 0 0 1 .DAT 1 14%

SEC 0 0 0 0 0 1 0 1 .COM 1 14%

SEC_ADD_USER 0 0 0 0 1 0 0 1 .COM 1 14%

SEC_IMTERNAL_STRUCTURES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SEC_INSTALL_TEMPLATES 0 0 0 0 1 0 0 1 .COM 1 14%

SECRET_SCREEN 0 0 0 0 1 0 0 1 .DAT 1 14%

SEWS_R_EVENT_CC20 0 0 0 0 0 1 0 1 .CCC 1 14%

SGI_CC_TOTAL_RADAR_OBJECTS_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_CCPDSR_REEP_ALIVE_MESSAGE_ 0 0 0 0 0 1 0 1 .ADS 1 14%

SGI_CSO_SYSC_PROCESS_STATUS_MESSAGE_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SGI_DISPLAY_TYPES 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_FDB_INVENTORY_MESSAGE_ 0 0 0 1 0 0 0 1 .ADS 1 14%

SGI_FDB_MISSILE_LAUNCH_MESSAGE_ 0 0 0 1 0 0 0 1 .ADS 1 14%

SGI_FDB_TYPES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

SGI_FUNCTION_KEY_INPUT_MESSAGE_ 0 1 0 0 0 0 0 1 .ADS 1 14%

SGI_FUSED_DATADASE_ 0 0 0 1 0 0 0 1 .ADS 1 14%

SGI_KEEPALIVE_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_MCIO_BASIC_TYPES_ 0 0 0 0 0 1 0 1 .ADS 1 14%

SGI_MENU_TYPES_ 0 0 0 1 0 0 0 1 .ADS 1 14%

SGI_PDS_I4_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_PDS_M14_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_PDS_M15_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_PDS_M17_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_PDS_M1A_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_PDS_S1_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_PERFORMANCE_LOG_MESSAGE_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SGI_PRINT_REQUEST_MESSAGE_ 0 0 0 0 1 0 0 1 .ADS 1 14%

 97

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

SGI_QUICK_ALERT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_QUICK_LOOK_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_RECORDING_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SGI_RTRD_PRIMARY_SHADOW_COORD_MESSAGE_ 0 0 0 0 0 1 0 1 .ADS 1 14%

SGI_SEWS_ML_EVENT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_SEWS_MLU_EVENT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_SEWS_MS_EVENT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_SEWS_R_EVENT_MESSAGE 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_SPRF_TIMED_WRITE_MESSAGE_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SGI_SYSC_TYPES_ 0 0 0 0 0 1 0 1 .ADS 1 14%

SGI_TAPE_DATABASE_MESSAGE_ 0 0 0 1 0 0 0 1 .ADS 1 14%

SGI_TAS_TYPES 0 0 1 0 0 0 0 1 .ADB 1 14%

SGI_TAS_TYPES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SHUTDOWN_VDSI1 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_VDSI2 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_VDSI3 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_WSC06 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_WSC07 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_WSC08 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_WSC09 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_WSC10 0 0 0 0 0 1 0 1 .RCF 1 14%

SHUTDOWN_WSCll 0 0 0 0 0 1 0 1 .RCF 1 14%

SITE_STATUS_SM03 0 0 0 1 0 0 0 1 .INB 1 14%

SPM_INPUT_PARAMETERS 0 0 0 0 1 0 0 1 .DAT 1 14%

SPRF_SPM_PERF_MONITR_TASK_COMP 0 0 0 0 1 0 0 1 .ADB 1 14%

SPRF_SPM_PERFORM_SPM_PERFORMANCE 0 0 0 0 1 0 0 1 .ADB 1 14%

SPRF_SPM_SERVICES 0 0 0 0 1 0 0 1 .ADB 1 14%

SPRF_SPM_SERVICES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

SPRF_WSC06_MONITORED_DEVICES 0 0 0 0 0 1 0 1 .DAT 1 14%

SPRF_WSC07_MONITORED_DEVICES 0 0 0 0 0 1 0 1 .DAT 1 14%

SPRF_WSC08_MONITORED_DEVICES 0 0 0 0 0 1 0 1 .DAT 1 14%

SPRF_WSC09_MONITORED_DEVICES 0 0 0 0 0 1 0 1 .DAT 1 14%

SPRF_WSC10_MONITORED_DEVICES 0 0 0 0 0 1 0 1 .DAT 1 14%

SPRF_WSCll_MONITORED_DEVICES 0 0 0 0 0 1 0 1 .DAT 1 14%

SSDCWS 0 0 0 0 1 0 0 1 .INPU
T

1 14%

SSP_BASIC_TYPES 1 0 0 0 0 0 0 1 .ADB 1 14%

SSP_TIME_TO_IMPACT 0 0 0 0 1 0 0 1 .ADB 1 14%

STARTUP_ARCHIVE_PROCESS 0 0 0 1 0 0 0 1 .COM 1 14%

STARTUP_VDSI1 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_VDSI2 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_VDSI3 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_WSC06 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_WSC07 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_WSC08 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_WSC09 0 0 0 0 0 1 0 1 .RCF 1 14%

STARTUP_WSC10 0 0 0 0 0 1 0 1 .RCF 1 14%

 98

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

STARTUP_WSCll 0 0 0 0 0 1 0 1 .RCF 1 14%

T1_SITE_STATUS_REPORT_CM38 0 0 1 0 0 0 0 1 .OUT 1 14%

TAS_DATABASE 0 0 0 1 0 0 0 1 .RDO 1 14%

TAS_THROTTLE 0 0 1 0 0 0 0 1 .DAT 1 14%

TDBA_READ_FIELD_LIST 0 0 0 1 0 0 0 1 .SQLAD
A

1 14%

TERMINATE_TEST_EXERCISE 0 0 0 0 0 1 0 1 .FCF 1 14%

TESTCTL_INIT 0 0 1 0 0 0 0 1 .COM 1 14%

THIRTY1 0 0 0 0 1 0 0 1 .INPU
T

1 14%

TIFP_TIFP_INTERFACE_TASK_COMP 0 0 0 0 0 1 0 1 .ADB 1 14%

TMBL_BUILD_INJECTION_MESSAGE 0 0 0 1 0 0 0 1 .ADB 1 14%

TMBL_MC_CONVERT_MESSAGE 0 0 0 1 0 0 0 1 .ADB 1 14%

TOTAL_RADAR_OBJECTS_CC05 0 0 1 0 0 0 0 1 .CCC 1 14%

USER-WS03_SUITE_O1 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_ALARM_ASSIGNMENT 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_ALARM_ASSIGNMENT_SUMMARY_NCC 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_ANTARCTIC_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_ASSESSMENT_AND_VALIDATION_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_CINCNORAD_WARNING_SUMMARY 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_CINCNORAD_WARNING_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_CMAFB_SYSTEM_STATUS_GRAPHIC 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_CONTROL_ 0 0 0 1 0 0 0 1 .ADS 1 14%

USER_CONUS_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_CONUS_LEFT 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_CORRELATED_CONN_STATUS 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_CORRELATED_CONN_STATUS_PREFORMAT 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_CORRELATED_CONN_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_CORRELATED_SCIS_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_DEFCON_LERTCON_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_DETAILED_ICADS_LIST_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DETAILED_MOB 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DETAILED_MOB_PREFORMAT 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DETAILED_MOB_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DETAILED_NUDET_LIST_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DETAILED_RADAR_EVENTS 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DIRECT_CS2_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_DIRECT_CS3_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_DIRECT_DDC_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_DIRECT_DSP_SITE_STATUS 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_DIRECT_DSP_SITE_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_DIRECT_LAUNCH_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DIRECT_NUDET_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DIRECT_RADAR_IMPACT_SUMM_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DIRECT_RADAR_LAUNCH_SUMM_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_DIRECT_RADAR_SITE_STATUS_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_EUROPE_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_EUROPE_ICADS_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

 99

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

USER_EUROPE_NUDET_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_ICADS_ASSESSMENT_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_ICADS_SITUATION_RELATED_ 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_ICADS_SITUATION_THEATER_MAP_2698 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_IR_LAUNCH_COMPOSITE_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_IR_LAUNCH_LISTING_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_IR_SIIUATION_RELATED 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_IR_SITUATION_MAP_OVERLAYS 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_IR_SITUATION_THEATER_MAP_OVERLAYS 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_KOREA_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_KOREA_ICADS_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_KOREA_NUDET_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MIDEAST_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_MIDEAST_ICADS_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MIDEAST_NUDET_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MINUTES_TO_REPORT_FOED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_MINUTES_TO_REPORT_FOED_MAIN_MENU 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_MINUTES_TO_REPORT_FOED_PREFORMAT 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_MISSILE_ATTACK_SUMMARY 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_MISSILE_WARNING_SUMMARY 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_MISSILE_WARNING_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MOB_SUMMARY 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MOB_SUMMARY_PREFORMAT 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MOB_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_MTF_DB 0 0 1 0 0 0 0 1 .DAT 1 14%

USER_NA_ICADS_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NA_NUDET_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NONINTERACTIVE 0 0 1 0 0 0 0 1 .ADB 1 14%

USER_NORAD_IR_LAUNCH_COMPOSITE_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NORAD_PRELIM_RADAR_COMPOSITE_B8E 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NORTH_AMERICA_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_NORTH_AMERICAN_WARNING_PREFORMAT 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NORTH_AMERICAN_WARNING_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NORTH_AMERICAN_WARNING_SUMMARY 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_NORTH_POLE_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_NUDET_SITUATION_THEATER_MAP_A889 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPCC_SYSTEM_STATUS_GRAPHIC 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_01 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_02 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_03 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_04 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_05 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_06 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_07 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_08 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_09 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_OPERATOR_FORMATTED_MAP_10 0 0 0 0 1 0 0 1 .RAW 1 14%

 100

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

USER_PACIFIC_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_PACIFIC_ICADS_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_PACIFIC_NUDET_SITUATION_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_PERIODS_OF_INTEREST_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_PRELIM_RADAR_COMPOSITE_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_PREVIEW_MAP_01 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_PREVIEW_MAP_02 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_RADAR_SITUATION_MAP_OVERLAYS 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_RADAR_SITUATION_RELATED 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_SCENARIO_EXECUTION_CONTROL_ID 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_SENSOR_DETECTIONS_LEFT 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_SENSOR_DETECTIONS_RIGHT 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_SENSOR_MAINTENANCE_RELATED 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_SHIP_SUB_LOCATIONS_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_SINO_SOVIET_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_SINO_SOVIET_IR_SITUATION_OVERLAYS 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_SINO_SOVIET_IR_SITUATION_PREFORMAT 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_SO_ATLANTIC_ICADS_SIT_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_SO_ATLANTIC_NUDET_SIT_RELATEED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_SOUTH_ATLANTIC_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_STRATEGIC_MOB_SUMMARY_PREFORMAT 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_STRATEGIC_MOB_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_STRATEGIC_SUMMARY_PREFORMAT 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_STRATEGIC_SUMMARY_RELATED 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_SUMMARY_DAT_MENU 0 0 0 1 0 0 0 1 .RAW 1 14%

USER_SYSTEM_MODE_CONTROL 0 0 0 1 0 0 0 1 .ADB 1 14%

USER_SYSTEM_STATUS_MENU 0 0 1 0 0 0 0 1 .RAW 1 14%

USER_WORLD_CENTER 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS02_SUITE_01 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS02_SUITE_03 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS02_SUITE_04 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS02_SUITE_05 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS02_SUITE_06 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS03_SUITE_03 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS03_SUITE_04 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS03_SUITE_05 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS04_SUITE_02 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS04_SUITE_03 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS04_SUITE_04 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS04_SUITE_05 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS04_SUITE_06 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS04_SUITE_O1 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WS05_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS05_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS05_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS05_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS05_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

 101

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

USER_WS05_SUITE_51 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS06_SUITE_01 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS06_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS06_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS06_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS06_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS06_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS07_SUITE_01 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS07_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS07_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS07_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS08_SUITE_01 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS08_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS08_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS08_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS08_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WS08_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSC_AMWC_SECURITY_CLASS1_AREA 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSC_AMWC_SECURITY_CLASS2_AREA 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO1_SUITE_02 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WSO1_SUITE_03 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WSO1_SUITE_04 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WSO1_SUITE_05 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WSO1_SUITE_06 0 0 0 0 1 0 0 1 .RAW 1 14%

USER_WSO10_SUITE_01 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO10_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO10_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO10_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO10_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO10_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO7_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO7_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO9_SUITE_01 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO9_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO9_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO9_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO9_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSO9_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSOll_SUITE_01 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSOll_SUITE_02 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSOll_SUITE_03 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSOll_SUITE_04 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSOll_SUITE_05 0 0 0 0 0 1 0 1 .RAW 1 14%

USER_WSOll_SUITE_06 0 0 0 0 0 1 0 1 .RAW 1 14%

USI_CREATE_MENU_DISPLAY 0 0 0 0 1 0 0 1 .ADB 1 14%

USI_MENU_DEFINITION 0 0 0 0 1 0 0 1 .ADB 1 14%

USI_MENU_PROCESSING 0 0 0 0 1 0 0 1 .ADB 1 14%

 102

Module 94-2 95-1 95-2 96-1 96-2 97-1 AOC
2A

Grand
Total

Module
Type

Release
Count

Release
Percent

USI_PROCEDURES_ 0 0 0 0 1 0 0 1 .ADS 1 14%

VIM_INPUT_FILE 0 0 0 0 1 0 0 1 .DAT 1 14%

VMSP_COMMAND 0 0 0 0 1 0 0 1 .COM 1 14%

VMSP_LOGIN 0 0 0 0 1 0 0 1 .COM 1 14%

VRP_TWAA_SYSUAF_QUOTAS 0 0 0 0 1 0 0 1 .DAT 1 14%

VRP_WSC_SYSUAF_QUOTAS 0 0 0 0 1 0 0 1 .DAT 1 14%

VUE$MASTER 0 0 0 0 1 0 0 1 .DAT 1 14%

VUE$PROFILE.VUE$ 0 0 0 0 1 0 0 1 .DAT 1 14%

b. CCPDS-R Change Driver Tabulation

Change Object 95-2 96-1 96-2 97-1 Grand Total Release Count Release
Percent

Exposure Exposure
Percent

display 7 6 14 1 28 4 100% 112 37%

message 1 2 20 3 26 4 100% 104 35%

menu 0 9 1 0 10 2 50% 20 7%

alert 0 2 4 0 6 2 50% 12 4%

rules 1 0 4 0 5 2 50% 10 3%

data 1 0 0 2 3 2 50% 6 2%

time 1 0 1 0 2 2 50% 4 1%

report 0 0 4 0 4 1 25% 4 1%

command 0 3 0 0 3 1 25% 3 1%

COTS 0 0 3 0 3 1 25% 3 1%

status 0 0 3 0 3 1 25% 3 1%

timer 0 0 3 0 3 1 25% 3 1%

alarm 2 0 0 0 2 1 25% 2 1%

satellite 0 0 2 0 2 1 25% 2 1%

count 1 0 0 0 1 1 25% 1 0%

error 1 0 0 0 1 1 25% 1 0%

failover 0 1 0 0 1 1 25% 1 0%

form 0 0 0 1 1 1 25% 1 0%

keyboard 1 0 0 0 1 1 25% 1 0%

message field 0 1 0 0 1 1 25% 1 0%

message filter 0 1 0 0 1 1 25% 1 0%

scenario 1 0 0 0 1 1 25% 1 0%

summary 0 0 1 0 1 1 25% 1 0%

table 0 0 1 0 1 1 25% 1 0%

thresholding 1 0 0 0 1 1 25% 1 0%

track 0 0 0 1 1 1 25% 1 0%

Grand Total 18 25 61 8 112

 103

Appendix 3

Volatility Characterization - Granite Sentry

 104

a. Granite Sentry Module Tabulation

Module 95-2 96-1 96-2 Grand
Total

Module
Type

Release
Count

Release
Percent

AIR_PUSH_CALLBACKS 3 1 0 4 .ADB 2 67%

MESSAGE_C167 2 2 0 4 .ADB 2 67%

MESSAGE_C17R 2 2 0 4 .FRM 2 67%

C170_TRACK_REPORT 1 2 0 3 .ADB 2 67%

FORM_ECTAR_REPORT 2 1 0 3 .UIL 2 67%

MESSAGE_K169 1 2 0 3 .FRM 2 67%

AIR_LIB 1 1 0 2 .ADB 2 67%

AUTOMATIC_MESSAGE_GENERATION 1 1 0 2 .ADB 2 67%

FIGHTER_STATUS_PKG 1 1 0 2 .ADB 2 67%

FORM_ECTAR_REPORT_PKG 1 1 0 2 .ADB 2 67%

FORMAT_N1X 1 1 0 2 .ADB 2 67%

IR_MISSILE_KIND_TC 1 0 1 2 ADB 2 67%

IR_MISSILE_KIND_TC_ 1 0 1 2 .ADS 2 67%

MESSAGE_C169 1 1 0 2 .FRM 2 67%

MESSAGE_CALLS 1 1 0 2 .ADB 2 67%

N016_TRACK_REPORT 1 1 0 2 .ADB 2 67%

OLD_USER_PROFILE_DATA_STRUC_ 1 1 0 2 .ADS 2 67%

OPLAN_DB_TRANSACTIONS 1 1 0 2 .ADB 2 67%

USER_PROFILE_DEFAULTS 1 1 0 2 .DAT 2 67%

WD_IR_LAUNCH_EST 1 0 1 2 .ADB 2 67%

WD_IR_LAUNCH_EST_ 1 0 1 2 .ADS 2 67%

AIR_BUILD_ROCC_SOCC_SUMMARY_PULL_RIGHT 3 0 0 3 .ADB 1 33%

CHECK_AIR_DIALOG_B0XES 3 0 0 3 .ADB 1 33%

COMMON_RESET_PKG 3 0 0 3 .ADB 1 33%

GS_MSG_COMMON_TYPES_ 0 3 0 3 .ADS 1 33%

GSW_AIR_MENU_TYPES_ 3 0 0 3 .ADS 1 33%

GSW_AIR_WIDGETS_ 3 0 0 3 .ADS 1 33%

MESSAGE_N016 0 3 0 3 .ADB 1 33%

AIR_BUILD_REQUEST_TABLES_MENU 2 0 0 2 .ADB 1 33%

AIR_BUILD_ROTHR_M_SUMMARY_DIALOG_BOXES 2 0 0 2 .ADB 1 33%

AIR_BUILD_ROTHR_T_SUMMARY_DIALOG_BOXES 2 0 0 2 .ADB 1 33%

AIR_BUILD_ROTHR_V_SUMMARY_DIALOG_BOXES 2 0 0 2 .ADB 1 33%

AIR_PUSH_CALLBACKS_ 2 0 0 2 .ADS 1 33%

AIRBASE_LOOKUP_TABLE_PKG_ 2 0 0 2 .ADS 1 33%

BUILD_OTHB_TRACK_MESSAGE 0 2 0 2 .ADB 1 33%

BUILD_REGION_SECTOR_TRACK_SUMMARY_TABLE 2 0 0 2 .ADB 1 33%

BUILD_TRACK_MESSAGE 0 2 0 2 .ADB 1 33%

CREATE_RADAR_OUTLINES 2 0 0 2 .ADB 1 33%

ELEMENT_TAB_PKG 0 2 0 2 .ADB 1 33%

FORM_AIRBASE_LIST 2 0 0 2 .UIL 1 33%

FORM_COMMAND_CONTROL_ID 2 0 0 2 .UIL 1 33%

FORM_RADAR_SITE_STATUS 2 0 0 2 .UIL 1 33%

GEN_CHANNEL_STATUS_UPDATE 0 2 0 2 .ADB 1 33%

 105

Module 95-2 96-1 96-2 Grand
Total

Module
Type

Release
Count

Release
Percent

GET_CHANGE_REQUEST 0 2 0 2 .ADB 1 33%

GET_INIT_REQUEST 0 2 0 2 .ADB 1 33%

GSW_DISPLAYS_ 2 0 0 2 .ADS 1 33%

GSW_SET_AIR_REQ_TABLE_DEFAULTS 2 0 0 2 .ADB 1 33%

MESSAGE_C170 0 2 0 2 .ADB 1 33%

PRINT_REGION_SECTOR_TRACK_SUMMARY 2 0 0 2 .ADB 1 33%

PROJECTION_CONSTANTS_ 2 0 0 2 .ADS 1 33%

ROTHR_MONTANA_AIR_TOGGLE_CALLBACKS 2 0 0 2 .ADB 1 33%

ROTHR_MONTANA_AIR_TOGGLE_CALLBACKS_ 2 0 0 2 .ADS 1 33%

ROTHR_TEXAS_AIR_TOGGLE_CALLBACKS 2 0 0 2 .ADB 1 33%

ROTHR_TEXAS_AIR_TOGGLE_CALLBACKS_ 2 0 0 2 .ADS 1 33%

ROTHR_VIRGINIA_AIR_TOGGLE_CALLBACKS 2 0 0 2 .ADB 1 33%

ROTHR_VIRGINIA_AIR_TOGGLE_CALLBACKS_ 2 0 0 2 .ADS 1 33%

SOCC_BOUNDARIES 2 0 0 2 .GEO 1 33%

TRACK_SUMMARY_PKG 2 0 0 2 .ADB 1 33%

WD_POLYGON_BOUNDARY 2 0 0 2 .ADB 1 33%

ADIZ 1 0 0 1 .GEO 1 33%

AIR_DEFENSE_DB_DEFINITION 0 1 0 1 .ADB 1 33%

AIR_MAP_PKG 1 0 0 1 .ADB 1 33%

AIR_MAP_PKG_ 1 0 0 1 .ADS 1 33%

AIRBASE_FIGHTER_STATUS_PKG 0 1 0 1 .ADB 1 33%

AIRBASE_PKG 1 0 0 1 .ADB 1 33%

AIRCRAFT_MOVEMENT_PKG 0 1 0 1 .ADB 1 33%

ALARM_DEFINITIONS_ 0 1 0 1 .ADS 1 33%

ALARM_DISPLAY_CONTROL_PKG 0 1 0 1 .ADB 1 33%

AM_EMR_SEC_SCREEN 1 0 0 1 .FRM 1 33%

AWS_GRAPHIC_PKG_ 0 1 0 1 .ADS 1 33%

AWS_HEADER_PKG 1 0 0 1 .ADB 1 33%

BEE_SUBSURFACE 0 1 0 1 .GKSM 1 33%

BEE_SURFACE 0 1 0 1 .GKSM 1 33%

BLUE_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%

BLUE_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 1 33%

BUILD_DEFCON_CHANGE_TABLE 1 0 0 1 .ADB 1 33%

BUILD_EMR_REPORT 1 0 0 1 .ADB 1 33%

BUILD_FIGHTER_STATUS 1 0 0 1 .ADB 1 33%

BUILD_HEADER_SEG_2 1 0 0 1 .ADB 1 33%

BUILD_ICON_DISPLAY 0 1 0 1 .ADB 1 33%

BUILD_MTR_REPORT 0 1 0 1 .ADB 1 33%

BUILD_NORAD_ROCC_SOCC_STATUS_TABLE 1 0 0 1 .ADB 1 33%

BUILD_SUB_SHIP_ICONS 0 1 0 1 .ADB 1 33%

BUILD_TAB_MESSAGE 1 0 0 1 .ADB 1 33%

C001_WEATHER_REPORT 1 0 0 1 .ADB 1 33%

C167_INTERCEPTOR_STATUS_REPORT 0 1 0 1 .ADB 1 33%

C169_ECTAR_REPORT 1 0 0 1 .ADB 1 33%

C171_RADAR_SITE_STATUS 1 0 0 1 .ADB 1 33%

C172_E3A_STATUS_REPORT 1 0 0 1 .ADB 1 33%

 106

Module 95-2 96-1 96-2 Grand
Total

Module
Type

Release
Count

Release
Percent

CANADA_BOUNDS 1 0 0 1 .GKSM 1 33%

CANADA_EAST_BOUNDS 1 0 0 1 .GKSM 1 33%

CHANGE_DATA_PUSH_CB 0 1 0 1 .ADB 1 33%

CHARACTER_UTILITIES_PKG 1 0 0 1 .ADB 1 33%

CHARACTER_UTILITIES_PKG_ 1 0 0 1 .ADS 1 33%

CHECK_ICON_TEXT 1 0 0 1 .ADB 1 33%

CLIPPING_PKG 1 0 0 1 .ADB 1 33%

CLIPPING_PKG_ 1 0 0 1 .ADS 1 33%

CONUS_BOUNDS 1 0 0 1 .GKSM 1 33%

CONV_RADAR 0 1 0 1 .ADB 1 33%

CONVERT_TRACK_DATA_TO_STRING 0 1 0 1 .ADB 1 33%

CREATE_EXERCISE_HEADER_2 1 0 0 1 .ADB 1 33%

CREATE_HEADER_2 1 0 0 1 .ADB 1 33%

CREATE_MAP_BACKGROUNDS 1 0 0 1 .ADB 1 33%

CREATE_SUB_SHIP_ECM_ICONS 0 1 0 1 .ADB 1 33%

CREATE_SUB_SHIP_SPAWNING_ICONS 0 1 0 1 .ADB 1 33%

CREATE_SUB_SHIP_SPLASHED_ICONS 0 1 0 1 .ADB 1 33%

CREATE_SUBSURFACE_ICONS 0 1 0 1 .ADB 1 33%

CREATE_SURFACE_ICONS 0 1 0 1 .ADB 1 33%

DATA_REDUCTION_COMMON_TYPES_ 1 0 0 1 .ADS 1 33%

DEAD_RECKON 0 1 0 1 .ADB 1 33%

DEFCON_CHANGE_PKG 1 0 0 1 .ADB 1 33%

DEFCON_CHANGE_PKG_ 1 0 0 1 .ADS 1 33%

DELETE_ITEM 1 0 0 1 .ADB 1 33%

DISPLAY_LIST_PKG_ 1 0 0 1 .ADS 1 33%

E_3_RP_STATUS_PKG 1 0 0 1 .ADB 1 33%

E_3_RP_STATUS_PKG_ 1 0 0 1 .ADS 1 33%

ELEMENT_TAB_PKG_ 0 1 0 1 .ADS 1 33%

EXERCISE_HEADER_2 1 0 0 1 .GKSM 1 33%

FAKELT_SURFACE 0 1 0 1 .GKSM 1 33%

FAKER_SUBSURFACE 0 1 0 1 .GKSM 1 33%

FORM_AIRBASE_FIGHTER_OVERALL_PKG_ 1 0 0 1 .ADS 1 33%

FORM_AIRBASE_FIGHTER_TYPE 0 1 0 1 .UIL 1 33%

FORM_AIRBASE_FIGHTER_TYPE_PKG_ 1 0 0 1 .ADS 1 33%

FORM_AIRBASE_SELECTION_1 1 0 0 1 .UIL 1 33%

FORM_AIRBASE_SELECTION_2 1 0 0 1 .UIL 1 33%

FORM_AIRBASE_SELECTION_3 1 0 0 1 .UIL 1 33%

FORM_AIRBASE_WEATHER_PKG_ 1 0 0 1 .ADS 1 33%

FORM_AWACS_STATUS 1 0 0 1 .UIL 1 33%

FORM_AWACS_STATUS_PKG 1 0 0 1 .ADB 1 33%

FORM_AWACS_STATUS_PKG_ 1 0 0 1 .ADS 1 33%

FORM_COMMAND_CONTROL_ID_PKG 1 0 0 1 .ADB 1 33%

FORM_COMMAND_CONTROL_ID_PKG_ 1 0 0 1 .ADS 1 33%

FORM_ECSUM_REPORT 1 0 0 1 .UIL 1 33%

FORM_ECSUM_REPORT_PKG 1 0 0 1 .ADB 1 33%

FORM_ECSUM_REPORT_PKG_ 1 0 0 1 .ADS 1 33%

 107

Module 95-2 96-1 96-2 Grand
Total

Module
Type

Release
Count

Release
Percent

FORM_ECTAR_REPORT_PKG_ 1 0 0 1 .ADS 1 33%

FORM_ECTAR_REPORT_RESET_PROC 1 0 0 1 .ADB 1 33%

FORM_FUNCTION_STATUS 1 0 0 1 .UIL 1 33%

FORM_FUNCTION_STATUS_PKG 1 0 0 1 .ADB 1 33%

FORM_FUNCTION_STATUS_PKG_ 1 0 0 1 .ADS 1 33%

FORM_RADAR_SITE_STATUS_PKG 1 0 0 1 .ADB 1 33%

FORM_RADAR_SITE_STATUS_PKG_ 1 0 0 1 .ADS 1 33%

FORM_REGION_FIGHTER_OVERALL 1 0 0 1 .UIL 1 33%

FORM_REGION_FIGHTER_OVERALL_PKG 1 0 0 1 .ADB 1 33%

FORM_REGION_FIGHTER_OVERALL_PKG_ 1 0 0 1 .ADS 1 33%

FORM_REGION_SECTOR_ACE_C2_ID 1 0 0 1 .UIL 1 33%

FORM_REGION_SECTOR_ACE_C2_ID_PKG 1 0 0 1 .ADB 1 33%

FORM_REGION_SECTOR_RADAR 1 0 0 1 .UIL 1 33%

FORM_REGION_SECTOR_RADAR_PKG 1 0 0 1 .ADB 1 33%

FORM_REGION_SECTOR_RADAR_PKG_ 1 0 0 1 .ADS 1 33%

FORM_REGION_SECTOR_STATUS 1 0 0 1 .UIL 1 33%

FORM_REGION_SECTOR_STATUS_PKG 1 0 0 1 .ADB 1 33%

FORM_REGION_SECTOR_STATUS_PKG_ 1 0 0 1 .ADS 1 33%

FORM_REGION_SELECTION_1 1 0 0 1 .UIL 1 33%

FORM_REGION_SELECTION_2 1 0 0 1 .UIL 1 33%

FORM_REGION_SELECTION_3 1 0 0 1 .UIL 1 33%

FORM_ROCC_SOCC_EMER_ACTIONS 1 0 0 1 .UIL 1 33%

FORM_SCRAMBLE_ORDER_PKG_ 1 0 0 1 .ADS 1 33%

FORM_STATUS_REPORT_E3A 1 0 0 1 .UIL 1 33%

FORM_STATUS_REPORT_E3A_PKG 1 0 0 1 .ADB 1 33%

FORM_TRACK_REPORT 0 1 0 1 .UIL 1 33%

FORM_TRACK_REPORT_PKG 0 1 0 1 .ADB 1 33%

FORM_TRACK_REPORT_PKG_ 0 1 0 1 .ADS 1 33%

FORMAT_MESSAGE_DATA 1 0 0 1 .ADB 1 33%

FRIENDLY_SUBSURFACE 0 1 0 1 .GKSM 1 33%

FRIENDLY_SURFACE 0 1 0 1 .GKSM 1 33%

GET_A_C170 0 1 0 1 .ADB 1 33%

GKS_SETUP 0 1 0 1 .ADB 1 33%

GKS_STOP 0 1 0 1 .ADB 1 33%

GREEN_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%

GREEN_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 1 33%

GS_ALARM_PKG_ 0 1 0 1 .ADS 1 33%

GS_CSSO 1 0 0 1 .UIL 1 33%

GS_CSSO_PKG_ 1 0 0 1 .ADS 1 33%

GS_MSG_FMTS_ 0 1 0 1 .ADS 1 33%

GSW_EVENT_HANDLER 0 1 0 1 .ADB 1 33%

HEADER_1 1 0 0 1 .GKSM 1 33%

HEADER_2 1 0 0 1 .GKSM 1 33%

HOSTILE_SUBSURFACE 0 1 0 1 .GKSM 1 33%

HOSTILE_SURFACE 0 1 0 1 .GKSM 1 33%

ICON 0 1 0 1 .GKSM 1 33%

 108

Module 95-2 96-1 96-2 Grand
Total

Module
Type

Release
Count

Release
Percent

INITIALIZE_GLOBAL 1 0 0 1 .ADB 1 33%

INTELLIGENCE_SUBSURFACE 0 1 0 1 .GKSM 1 33%

INTELLIGENCE_SURFACE 0 1 0 1 .GKSM 1 33%

IR_LAUNCH_AREA_TC_ 1 0 0 1 .ADS 1 33%

LAT_LONS 1 0 0 1 .GEO 1 33%

LOAD_DISPLAY_LIST 1 0 0 1 .ADB 1 33%

LOAD_ECM_ICONS 0 1 0 1 .ADB 1 33%

LOAD_SPAWNING_ICONS 0 1 0 1 .ADB 1 33%

LOAD_SYMBOLS 0 1 0 1 .ADB 1 33%

ME55AGE_C169 0 1 0 1 .FRM 1 33%

MESSAGE_C162 1 0 0 1 .FRM 1 33%

MESSAGE_C171 1 0 0 1 .FRM 1 33%

MESSAGE_K162 1 0 0 1 .FRM 1 33%

MESSAGE_N008 1 0 0 1 .FRM 1 33%

MESSAGE_N030 0 1 0 1 .FRM 1 33%

MESSAGE_TO_TEXT_CONVERSIONS_ 1 0 0 1 .ADS 1 33%

MICROWAVE_SENSORS 0 1 0 1 .DAT 1 33%

MOVE_A_TRACK 0 1 0 1 .ADB 1 33%

N014_AWACS_STATUS 0 1 0 1 .ADB 1 33%

NORAD_ROCC_SOCC__STATUS__PKG_ 1 0 0 1 .ADS 1 33%

NORTH_AMERICA_BOUNDS 1 0 0 1 .GKSM 1 33%

NORTH_EAST 1 0 0 1 .GKSM 1 33%

NORTH_EAST_ADIZ 1 0 0 1 .GKSM 1 33%

NORTH_EAST_BOUNDS 1 0 0 1 .GKSM 1 33%

NORTH_WEST_BOUNDS 1 0 0 1 .GKSM 1 33%

OPLAN_DB_TRANSACTIONS_ 0 1 0 1 .ADS 1 33%

OTH_EAST_1_BOUNDS 1 0 0 1 .GKSM 1 33%

OTH_EAST_2_BOUNDS 1 0 0 1 .GKSM 1 33%

OTH_EAST_3_BOUNDS 1 0 0 1 .GKSM 1 33%

OTH_WEST_4_BOUNDS 1 0 0 1 .GKSM 1 33%

OTH_WEST_5_BOUNDS 1 0 0 1 .GKSM 1 33%

OTH_WEST_6_BOUNDS 1 0 0 1 .GKSM 1 33%

PENDING_SUBSURFACE 0 1 0 1 .GKSM 1 33%

PENDING_SURFACE 0 1 0 1 .GKSM 1 33%

POLAR_PROJECTION_BOUNDS 1 0 0 1 .GKSM 1 33%

PRINT_DEFCON_CHANGE 1 0 0 1 .ADB 1 33%

PRINT_MESSAGE_REPORT 0 1 0 1 .ADB 1 33%

PRINT_NORAD_ROCC_SOCC_STATUS 1 0 0 1 .ADB 1 33%

PROCESS_ROCC_SOCC 1 0 0 1 .ADB 1 33%

PROCESS_SYSTEM_STATUS_ALARM 0 1 0 1 .ADB 1 33%

PROCESS_TRACK_MESSAGE 0 1 0 1 .ADB 1 33%

PUSH_CALLBACKS 0 1 0 1 .ADB 1 33%

RADAR_OUTLINES 1 0 0 1 .GKSM 1 33%

RADAR_PKG 1 0 0 1 .ADB 1 33%

RADARS 0 1 0 1 .IN 1 33%

RED_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%

 109

Module 95-2 96-1 96-2 Grand
Total

Module
Type

Release
Count

Release
Percent

RED_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 1 33%

ROCC_SOCC_PKG 1 0 0 1 .ADB 1 33%

SHOW_A_SHIP_SUB 0 1 0 1 .ADB 1 33%

SHOW_DISPLAY 1 0 0 1 .ADB 1 33%

SHOW_ROCC_SOCC 1 0 0 1 .ADB 1 33%

SOUTH_EAST 1 0 0 1 .GKSM 1 33%

SOUTH_EAST_ADIZ 1 0 0 1 .GKSM 1 33%

SOUTH_EAST_BOUNDS 1 0 0 1 .GKSM 1 33%

SOUTH_WEST_BOUNDS 1 0 0 1 .GKSM 1 33%

SPECIAL_SUBSURFACE 0 1 0 1 .GKSM 1 33%

SPECIAL_SURFACE 0 1 0 1 .GKSM 1 33%

STRING_UTILITIES_PKG 1 0 0 1 .ADB 1 33%

STRING_UTILITIES_PKG_ 1 0 0 1 .ADS 1 33%

SUBSURFACE_SPLASHED 0 1 0 1 .GKSM 1 33%

SURFACE_SPLASHED 0 1 0 1 .GKSM 1 33%

TDA_ARRAY_SPEC_ 0 1 0 1 .ADS 1 33%

TDA_LOOKUP_PKG 0 1 0 1 .ADB 1 33%

TRACK_CHANGE 0 1 0 1 .FRM 1 33%

TRACK_INITIALIZATION 0 1 0 1 .FRM 1 33%

TRACK_STRING_CONV_PKG 1 0 0 1 .ADB 1 33%

TRACR_PKG 0 1 0 1 .ADB 1 33%

UNKNOWN_SUBSURFACE 0 1 0 1 .GKSM 1 33%

UNKNOWN_SURFACE 0 1 0 1 .GKSM 1 33%

USER_PROFILE_DATA_STRUC_ 1 0 0 1 .ADS 1 33%

WD_TARGETS 1 0 0 1 .ADB 1 33%

WESTERN_HEMISPHERE_BOUNDS 1 0 0 1 .GKSM 1 33%

WHITE_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%

WHITE_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 1 33%

WORLD_05 1 0 0 1 .GEO 1 33%

WORLD_BOUNDS 1 0 0 1 .GKSM 1 33%

YELLOW_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%

YELLOW_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 1 33%

b. Granite Sentry Change Driver Tabulation

Change Object 95-2 96-1 96-2 Grand Total Release Count Release
Percent

Exposure Exposure
Percent

display 3 3 1 7 3 100% 21 64%

DIM 1 0 1 2 2 67% 4 12%

message 0 3 0 3 1 33% 3 9%

alarm 0 2 0 2 1 33% 2 6%

site 0 1 0 1 1 33% 1 3%

threat 1 0 0 1 1 33% 1 3%

weapon 0 1 0 1 1 33% 1 3%

 110

Change Object 95-2 96-1 96-2 Grand Total Release Count Release
Percent

Exposure Exposure
Percent

Grand Total 5 10 2 17

 111

Bibliography

[1] _______, “COCOMO 2.0 Model User's Manual,” University of Southern
California 1996.

[2] _______, “Domain Engineering Guidebook,” Space and Warning Systems Center,
<http://www.asset.com/stars/loral/domain/guide/home.html>, 22 June 1995.

[3] _______, “REVIC User's Manual,” U.S. Air Force Cost Center, 1991.

[4] AFOTEC, Software Maintainability - Evaluation Guide, vol. 3. Kirtland AFB,
NM: HQ Air Force Operational Test and Evaluation Center, 1991.

[5] L. Bækgaard, “Designing Adaptable Software - Parameterization of Volatile
Properties,” presented at Conference on Software Maintenance, San Diego, CA,
1990.

[6] L. A. Belady and M. M. Lehman, “A model of large program development,” IBM
Systems Journal, vol. 15, no. 3, pp. 225-252, 1976.

[7] K. Bennett, “Re: Software Volatility,” Personal correspondence, 1996.

[8] B. W. Boehm, Software Engineering Economics: Prentice Hall, 1981.

[9] B. W. Boehm, “Software Risk Management: Principles and Practices,” IEEE
Software, vol. 8, no. 1, pp. 32-41, 1991.

[10] T. P. Bowen, G. B. Wigle, and J. T. Tsal, “Specification of Software Quality
Attributes - Software Quality Specification Guidebook, Vol. I-III.,” Rome Air
Development Center, Griffiss AFB, NY, February 1985.

[11] E. Dean, “Parametric Cost Analysis,” <http://akao.larc.nasa.gov/dfc/pca.html>,
April 1995.

[12] S. Dekleva and N. Zvegintzov, “Real maintenance statistics,” in Software
Maintenance News, vol. 9, no. 2, 1991, pp. 6-9.

[13] D. Ferens, “Review of Software Cost Estimation,” in Software Methodology
Handbook, G. Novak-Ley and S. Stukes, Eds.: Space Systems Cost Analysis
Group, Software Subgroup, 1995, pp. 2-1 - 2-54.

[14] J. L. Floyd and P. C. Gould, “Software Volatility Analysis - A Historical Approach
to Future Software Maintenance,” presented at The Fifth Annual Software
Technology Conference, Salt Lake City, 1993.

 112

[15] J. Goguen, “Parameterized Programming,” Center for the Study of Language and
Information, Stanford, CA CSLI-84-10, Aug. 1984.

[16] J. A. Hager, “Developing maintainable systems: A full life-cycle approach,”
presented at Conference on Software Maintenance, 1989.

[17] J. A. Hager, “Software Cost Reduction Methods in Practice: A Post-Mortem
Analysis.,” The Journal of Systems and Software, vol. 14, no. 2, pp. 67-79, 1991.

[18] B. Holchin, “Software Maintenance Survey,” in Software Methodology Handbook,
G. Novak-Ley and S. Stukes, Eds.: Space Systems Cost Analysis Group, Software
Subgroup, 1995, pp. 5-1 - 5-13.

[19] J. M. Hops and J. S. Sherif, “Development and Application of Composite
Complexity Models and a Relative Complexity Metric in a Software Maintenance
Environment,” The Journal of Systems and Software, vol. 31, no. 2, p. 157, 1995.

[20] B. M. Horowitz, “The Importance of Software Architecture,” The MITRE
Corporation, Bedford, MA June 1991.

[21] F. Land, “Adapting to Changing User Requirements,” Information &
Management, no. 5, pp. 59-75, 1982.

[22] B. Lientz, E. Swanson, and G. Tompkins, “Characteristics of Application Software
Maintenance,” Communications of the ACM, vol. 21, no. 6, pp. 466-471, 1978.

[23] J. Martin and C. McClure, Software Maintenance: The Problem And Its Solutions.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

[24] D. Parnas, “Designing for Ease of Extension and Contraction,” IEEE Transactions
on Software Engineering, vol. SE-5, no. 2, pp. 129-137, 1979.

[25] Paul the Apostle, “First Letter to the Corinthians,” 13:1-8.

[26] D. E. Peercy, “Software Logistics National Workshop,” Society of Logistics
Engineers, McLean, VA 15-16 Aug. 1989.

[27] D. N. Podger, “High Level Languages - A Basis for Participative Systems
Design,” in Design and Implementation of Computer-Based Information Systems,
N. Szyperski and E. Groschla, Eds.: Sijthoff & Noordhoff, 1979.

[28] J. Ruhl, “Why a computer system is not like a bathtub,” Software Maintenance
News, vol. 6, no. 12, p. 12, 1988.

[29] E. Swanson, “The Dimensions of Maintenance,” presented at 2nd International
Conference on Software Engineering, San Francisco, 1976.

 113

[30] E. C. Van Horn, “Software Must Evolve,” in Software Engineering, vol. 1, H.
Freeman and P. M. Lewis, Eds.: Academic Press, 1980, pp. 209-226.

