Colorado Technical University

Addressing Software Volatility in the
System Life Cycle

A Dissertation Submitted To
The Graduate Council In Partial Fulfillment Of
The Requirement For The Degree Of
Doctor of Computer Science

Department of Computer Science

By
Glenn Gerard Butcher

M.S. Florida Institute of Technology, Melbourne, FL, 1985

B.S. Arizona State University, Tempe, AZ, 1980

Colorado Springs, Colorado

September 1997

Addressing Software Volatility in the System Life Gycl
By

Glenn Gerard Butcher

THE DISSERTATION IS APPROVED

Dr. Charles N. Schroeder

Dr. Mary Jane Willshire

Dr. Richard Fairley

Date Approved

Abstract

Software maintenance costs are well-documented dargest component of
software life cycle cost. While significant resdaattention has been paid to the
characterization of maintainability, program understagdand software organization for
maintainability, there is little work published to datethe a priori identification and
encapsulation of a software system’s volatile poifitsis dissertation proposes a
methodology for identifying the most probable pointsafivgare to be developed to
experience the highest frequency of change, and use #tidgied information as
guidance in developing tools, organization, and techniqueske these points easy to
change. In order to validate the fundamental behavientmancive software volatility, a
volatility-oriented maintenance life cycle cost modgbresented to describe the
relationship between frequency, cost-to-change, encaipsuddrategies, and the resulting
life cycle cost. The behavior of this model is tloenrelated against historical change data

from systems of a single domain.

Acknowledgments

The success of this dissertation is directly due torténbers of my committee,
Drs. Richard Fairley, Mary Jane Willshire, and partidylmy chairman, Dr. Charles
Schroeder. Their guidance and suggestions turned thisidiadd” idea into a viable

approach for addressing software volatility.

A number of people directly contributed their time iailfeating access to the data
essential to accomplishing this study, including Lt. &idhard Pope, Maj. Dennis Kaip,
1Lt. Geoff Bednarsky, Sydney Rodriguez, Bob Klotz, JanesaBedes, Robert Philp,
and Roy Garcia of the Space and Warning Systems C@wmtarson Air Force Base,
Colorado. The assistance of David Erickson, JosedhyKaind Edward Schulz from the

Lockheed-Martin Corporation enabled collection of datalie new Granite Sentry.

Special thanks go to Nicholas Zvegintzov, who, throughvhitings and
conversation, provided invaluable insight into the pbids/ and process of software

maintenance. He also provided incisive comment ootigéhal research proposal.

A debt of gratitude is due to the members of Operatingti@mt SG, Air Force
Operational Test and Evaluation Center, Buckley Air dvati Guard Base, Colorado.
These people are my co-workers, and their patiencemétturing this test of persistence

will not soon be forgotten.

| dedicate this effort to Shandra, Eric, and Mattheoping it makes even just a

small difference in the world whose reins they veike.

But foremost, | owe my personal success in this ermtdavmy wife Sherry. You
fully and unwaveringly supported me in this endeavor froginmng to end, and now it is
time for me to return that support. Particularly, fibtheat I've learned here, none of it

matches the importance of these words that you lidehame shown me:

“If | speak in the tongues of men and of angels, but have not love, | ara only
resounding gong or a clanging cymbal. If | have the gift of prophesy and can fathom all
mysteries and all knowledge, and if | have a faith that can move mountaihs\ieutot
love, | am nothing. If | give all | possess to the poor and surrenddoahy to the

flames, but have not love, | gain nothing.

Love is patient, love is kind. It does not envy, it does not hbashot proud. It
is not rude, it is not self-seeking, it is not easily angerdadaps no record of wrongs.
Love does not delight in evil but rejoices with the truth. It alvpmgsects, always trusts,

always hopes, always perseveres. Love never f§#is]”

Thank you, Sherry; | love you...

Contents

N 1 1 = T SRR USROS [
ACKNOWIEAGMENTS. ...t e e e e e e e e e esaeeesnseeeenseaeannaens I
L g1 4 oo [1ox T o PRSP 1
1.1 Statement of the Problemcooiiiiiiiiii e 2
I 1Y 01 1TSS P 5
1.3 ASSUMIPLIONS. .. ceetiieeeii et eeeeemmt e e e e e e et e e e e e e e et e e e eaan e eennnas 6
1.4 Conceptual FrameWOrKcooeiiiiiiiiiiceecee e e e e e 7.
O B 1= 1101 (0 o ST 10
1.4.2 A Volatility-Oriented Maintenance Life Cycle Cddbdel............. 12
1.4.3 Methodological Model.............ccoouiiiiiiice e, 15
1.4.3.1 Change Driver Identification.............c.cccceeuiiieiiiineen. 16

1.4.3.2 Change Driver Analysisommmmmeeeeevvneeeennnn... 18
1.4.3.3 Change Driver Prioritization............cccceeeeieevivineeeennnn. 19
1.4.3.4 Trade StUdIESuuviiiiiiiiiiiie et 19

1.4.3.5 Selection of Encapsulation Initiatives.....cweu............. 20

1.4.3.6 Encapsulation-Oriented Developmentcccccceevevivineeenns 21
1.5 Research Methodcoooiiiiiiiiii e 21

1.5.1 Volatility Validation...............coeuiiiieee e 21

1.5.2 Cost Model Validation.............ccooiviieimmmmmmeeeeeee e 23
1.6 SUMMIAIY ...ttt e e e et e e e e et e e e eaaens 24

2 ANalySISOf the LIteratUre......cccueeiiiie et e e e e
2.1 Motivational RESEAICN.............iiiiiii e 26
2.2 Previous ReSEArChiiiiiiii e s 28
2.2.1 Software VOolatility...............ueerieiiiccmee e 28
2.2.2 Software Maintenance Cost Modeling..........cccceeeeiiiiiiiiiinnenn, 33
2.3 Related RESEAICN.........cccoeviiiiiii e et e e 37
2.3.1 Volatility 1dentificationcoouuiicceeiii i 37
2.3.2 Volatility Encapsulationc...uieeeeemeiiiiieeeie e eeeie e 38
3 RESEATCh MELNOU ... e 41
3.1 The Fundamental Process of Software Maintenance............................. 41
3.2 Description of the DOmain.............oooiiieeiee e 44.
3.2.1 Granite SENLIY.....cccuueieeiiie e e et eeeermm e e e e e e e e 45

3.2.2 Command Center Processing and Display System - Bem@at
(O 01 = IS o P 46
3.2.3 Space Defense Operations Center (SPADOC).......................47

3.3 The Data Collection Subject: The Space and Warnistg@®g Center (SWSC)47

3.4 Method: Establishing The Nature of Volatilityccccoeeeeiiiiiinnnnnn..n. 48
3.4.1 Change History Data Collection............commeeeeeeeriieeeerineennnnn... 49
3.4.2 Change History Data Reduction..............ccommmmmeeeeeerirnneerennnnnn. 52
3.5 Method: Identifying Cross-System Volatility Corr@as............................. 56
3.5.1 Cross-System Volatility Data Collectioncccc.....ooeevvvieevnnnnn.n. 56

3.5.2 Cross-System Volatility Data Reductionec.veeeveveeeeeennn.... 57

3.6 Method: Asserting the Benefit of Addressing Volatility............................ 61

3.6.1 Cost Comparison Data Collection............cccoeeviviiiiiiiiiieeiiieeees 61

3.6.2 Cost Comparison Data Reduction.............ccceeeeeeviiiieeiiinennns 62
N = S SR SRPRSSPR 63

4.1 Analysis: Establishing The Nature of Volatility.................ccooeeiiiiiiiinnnnn.n. 63

4.2 Analysis: Identifying Cross-System Volatility Cdat@ons............................ 64

4.3 Analysis: Asserting the Benefit of Addressing Vatstil.............................. 69
5 ResUItS ANd CONCIUSIONS.ccuiiiiiiiieiieie ettt nn e 70
5.1 Summary of RESUILSuiiiiiii it 70

5.2 Conclusions and Further StUdy o e e eveeeeeeiie e ee e e e 74
Appendix 1: Volatility Characterization - SPADOCccccocoeeeviee e 76
Appendix 2: Volatility Characterization - CCPDS-Rccccoceeviie e 85
Appendix 3: Volatility Characterization - Granite Sentrycccceeeeeevveeeeveeenne, 103
BiblOGrapNy ... 111

vi

List of Tables

3.1: Change History Data DICLIONAIYooeveuuiieiiiiie e e e e e 50

3.2: Module Volatility Release COVEIAgEecumeeuneeeeriiaereiiiaeseiineeeenieeeeannnns 51

3.3: Sample Change Frequency Tabulation.......... .o eceeeeeeeiiinieriiiieeeiiiieeeeiieeen. D3

3.4: Summary Volatility IMELIICSuuiiiiei e e et e e e e e e e e e e e e eean s 53
3.5: Change FrequeNCY SUMIMANY...........uieiiuueeeeeeaeeeeeiaeeeatseeesneeeeeanaeeesnnaees 55
3.6: Change Driver Release COVErage.........ciicemmeeereeeeiieeeeeiieeeeiie e e e eenas 57
3.7: Change Driver Generic Pairs EXamPpIe....... e eeeerieeeiiieeeiiiieeeeiieeesannnns 58
3.8: Change Category Tabulation...............uuiccceeemeeeiiie e e e 59
3.9: Change Categorization Correlationcccccceeiiiiiiiiiiiiiie e 59
3.10: Predominant Change ODJECLSviiiiiiiieii e e 60
3.11: Change Object Correlation..............c.vceemceii e e 61
4.1: Change Object Volatility Contributioncccooeeiiiiiiiiiie e 65

Vii

Chapter 1

| ntroduction

The maintenance phase of the software life cydeblean amply described as the
crux of the “software crisis” [20]. And when one exaed the nature of the effort
devoted to maintenance, it is determined that the ihagirthat effort is devoted to
changes made to accommodate new or evolving user reqaigeniethen follows that
initiatives targeted to reducing the cost of maintengpadicularly the cost of
adaptations, would provide more cost reduction per unitf@ftefpent than efforts
targeted at reducing any other cost. Many cost redudtraiires proposed in the past
few years have purported to address maintenance castigjthipetter software
organization (object orientation, structured programmingyeasing program
understanding, and quantification of attributes such awaidtsize and complexity. But
few have directly addressed the costs of change, dahér words the effort required to
implement specific changes. Particularly, there iy litle documented research to date
on the feasibility or effectiveness of predicting ajp@in software yet to be developed.
Countless techniques for encapsulating software changes gaist in both research and
practical application, but there exists no methodologwtget their application to the

most volatile points of a software system. Thisatisgion sets out to validate the

concepts of software volatility prediction and encap&uraibpening the door for

specification of processes to support both activitiesuph the software life cycle.

Two definitions that conceptualize software volatiire given. Firstsoftware
volatility is defined as the propensity for software to change time in response to
evolving requirements. Later in this dissertationpperational definition for software
volatility will be presented.Software changeabilityefers to the ease with which a given
software artifact can be changed in response to egofeiquirements. The first definition
deals with the situation of change; the second withigbponse to the situation. Note that
the definitions consider only enhancive changes, gecdkegorizations of change
presented by Van Horn [30]; corrective volatility, resturing volatility and, to an extent,
adaptive volatility respond to dynamics outside of thénred evolving user requirements.
It is the intent of this dissertation to validate thedamental behavior of software
volatility in order to substantiate the cost-effeetiess of predicting and encapsulating
volatile points in software. The long range goal &f thsearch is to “operationalize”
software volatility by inserting techniques in theta@ire requirements definition and
design processes to make software more malleable - fingnsoftware changeability

targeted toward anticipated requirements volatility.

1.1 Statement of the Problem

Relatively speaking, all software is “easy” to changee name “software” implies
a manifestation that is malleable; receptive to natibn. The software-based functions

of a system do take much less intellectual and phydfoat & change than the hardware

based functions, both in the design and implementatitimeothange as well as its
promulgation among multiple copies. The architectural eptscpresented by John Von
Neumann for stored program computers resulted in a clasaabfines with flexibility to
handle a much broader range of problems, in ways tditorédividual preferences, than

any other machines introduced previously.

But, while the physical act of modification is simpiegaking software have its
intended effect is less so. Programmers usually arbusypgetting the program to work
as intended the first time to worry about making the @nogeasy to change later. And,
once a program is put into use, subsequent changes to asdaterchanging user needs
may be simple or complex, depending a lot on the natutteeathange and how the

implementing analyst and/or programmer constructed tla€<s3raffected.

It should be clear that there is great cost-savingnpiatén any advancement that
encourages the design of software to accommodate ch@nrgerationale to support this
assertion is the same used in code profiling: execufitireqorogram under a code
profiler shows where the program spends its computerscythe areas that occupy most
of the execution time become prime targets for optiisina However, most research on
maintainability to date is on its characterizatimrthe hope that, by showing good and
bad characteristics, maintainability researcherdsandourage developers to design and
code more maintainable software. It is for thissogathat the term “changeability” is
preferred in order to distance the proactive approachilolifgy in changeability

advocated in this work from the after-the-fact chaazation of maintainability.

Actually, the research collected to date suggests Hieesrchical levels that,
combined, serve to characterize a software systailisy to accommodate volatility.

From lowest in potential to highest, they are:

1. Maintainability: The general aspects of softwarecsure - modularity,
object orientation, coupling, cohesion, etc. - thallifate all aspects of

maintenance, from defect correction to enhancement.

2. Changeability: Requirements analysis and design undertalspecifically

accommodate anticipated enhancive change.

3. Domain Engineering: The top-to-bottom design of ansok system as a
foundational architecture of components common to pipdication’s domain,
capped by an integrating layer that allows the use afahgonents to be tailored
to fit specific applications. This requires specificataf an interaction model for

the domain’s components that covers most possible appiicsituations.

While all three of these aspects are important,upsn the second of these three that this
inquiry will focus: validation of the life-cycle benebf attempting to predict the most
volatile points in a software system, and encapsulatidghese points with mechanisms

that will lower their cost-to-change.

1.2 Hypotheses

The following hypotheses have been selected as thiadkiegtors of the validity of
incorporating software volatility point prediction anccapsulation techniques into

software development processes:

H1: Distribution of frequency of enhancive change in a system is not uniform

This hypothesis asserts that a relatively small priigpoof a software system experiences
frequent “revisit” to implement enhancive change, véalidathe benefit of making these
parts as easy to change as economically possibls.a$éertion parallels the economic
argument for reuse, in that extra effort to encapsalateange point has the potential for
positive amortization over the reduced unit cost ofgelamumber of anticipated changes

during maintenance.

H2: Within a domain, the most volatile objects of change are common iciss.

This hypothesis asserts that common forces of eieacicange exert upon all systems of
a domain, validating the effort to use change histafiexisting systems to predict

patterns of change in new systems of the same domain.

H3: Effort expended in software development to encapsulate a volatilegairtes

the cost to change the encapsulation object in maintenance.

This hypothesis captures the essential motivatioododucting volatility prediction and

encapsulation - life cycle cost reduction. Its basthié demonstrated tendency of

volatility to cluster in a relatively small numbermbdules of a system, which
correspondingly map to a certain few change driversat@air with frequency greater
than 1 during the maintenance life cycle. If therererehange drivers that occur more
than once in a software system, then expending efigrtedict and encapsulate volatile

points would not be worth the effort saved in making glkan

1.3 Assumptions

The following assumptions serve to focus this inquirytase aspects of software

volatility that show the most promise in reducing difele costs:

1. The effort required to make software changeable onfigete with the
effort required to implement the required functionality pedormance. Given
that most software development efforts have finisouoeces, the framework for
incorporating changeability should target the most “Welgparts of the system.
“Enhancive volatility” is defined with respect to sefire change as the propensity
for a software system to change over time in resptinsbanging user
requirements. Consequently, “volatile points” are spegléces in a software
system that are expected to change during the life cyidles definition is used in
postulating modifications to the software developmentgs®sto incorporate

changealbility.

2. Every concept of software organization described te id#licitly
supports changeability. Structured programming, encapsulatistraction,

objects and their polymorphism and inheritance --falhese, when practiced to

6

the letter and intent of their authors, help to redbeeetfort required to
implement subsequent changes. Well-organized softwesis/ely easier to
change. However, the focus of this research wilib@pplication of mechanisms

targeted to facilitating specific changes.

3. The techniques to predict and encapsulate softwardlityotat
independent of the particular software development metbggaised. Indeed,
these techniques should enhance the cost-effectivehasg methodology by
targeting its design phase(s) toward implementing changleamisms that cut the

cost of change.

1.4 Conceptual Framewor k

There are two fundamental activities required to mad@ftavare component
easier to change: 1) identifying the need to make ingdeble, and 2) encapsulating the
component in an appropriate change mechanism. Thetfystis rooted in the
requirements gathering and analysis process, the sectimdesign and implementation
process. Therefore the focus of incorporating the equtnaf volatility in the software
development process is on the identification, priotitza and encapsulation of volatility

points in a software system.

Identification of volatility points is a lot like idé&fying risk in software
development: you don’t know if you were right until you dedre. Like lottery numbers,

the actual change history of a software system [se'tisely known until it happens.

Sorting software systems into the following categapies/ides a rough idea of the

certainty that can be expected in volatility point iifeation:

1. Existing Systems - Software that is currently in usdias a history of
change, which is maintained formally or at leash& minds of the maintainers,

that can be captured and analyzed to identify volagititints.

2. Replacement Systems - Software to be developed tceeph existing
system. This software can also make use of thaerexisystem’s change history.
But replacement software may provide functionality tetnges the expectations
of its users, consequently altering the enhancive iltylditom that expected based

on analysis of the previous system.

3. “Brand-New” Systems - Software to be developed ta meew need. It
is for these systems that volatility point identifioa is most problematic.
Approaches could include user interviews to identify grdigid changes in
requirements, and identification of existing systenthénsame domain and/or

architectural category whose change histories candraieed for correlations.

Volatility identification for all three categorie$ ®ystems is an exercise in
prediction based on prior events. The categories prassntinuum of uncertainty based

on decreasing correlation of past experience.

Using the change histories of existing systems tigipate volatility of new

systems in the same domain requires a transformationthe system-specific volatile

points to a general specification of the driving requimrgimé-or this reason, the objective
of existing system volatility analysis must be thentification ofchange driversyhich

are descriptions of the user requirement driving the enlemaodification. Change

drivers should generically describe the data and/or betheovbe changed in the system.
Generic specification should allow change drivers tagyied to software systems across

the target domain.

Prioritization of change drivers must account for a lpemof factors that will
influence the selection of the most cost-effectiolatility points to encapsulate with
appropriate change mechanisms. This prioritization nalkst into account the frequency
of anticipated change, along with the criticality o tthange, the required response time,
and identification of volatile points that are affettsy more than one change driver.
Prioritization should support the encapsulation of thatielpoints that result in the
biggest positive impact to the system’s life cycle cgsten that we can't afford to inflict

the same level of treatment to all identified changesds.

All of the means available to encapsulate volatilatganust be understood in
terms of their “bang for the buck” -- how much theytaegative to their potential benefit.
This knowledge is essential to match prioritized vattiloints with appropriate
encapsulation mechanisms. Other factors influenseptiring, such as the nature of the
operational environment, required responsiveness, afiigwation management

constraints, but cost-benefit is the overriding comsitten.

It must be recognized that a given volatile point ae multiple encapsulation
alternatives, and the selection of a volatile paintehcapsulation may well depend on
identifying a cost-palatable mechanism. Therefore stiftware implementation process
must include an activity to identify appropriate encapsulation mechanisms for each
candidate volatility point so that cost-benefit tradeetisions can be made with full

knowledge.

1.4.1 Definitions

Prior to presenting the methodological and cost moitledsnecessary to propose

operational definitions of key terms and concepts:

1. Software Volatility: generically defined to be tlaio of system elements
changed to the total number of system elements forem gieriod of time.
Software volatility is expressed as a percentage. deiisition can be instantiated

in a number of ways:

a. with respect to the foundational metric of “systdement.” This
element can be lines of code or number of modules. Medwluld be

further discriminated into categories, i.e. data vs. code

b. with respect to the time period. Volatility candadculated for a
release, or for a time interval, or for a life ®allepending on the

comparative analysis to be conducted.

10

C. with respect to change type. The standard enhamacleptive,
corrective, and perfective categories can be used. d&siertation will

make particular use of characterization of enhanciletility.

This measure of software volatility meets the dediniof a ratio scale in that its
values express an interval relationship and the seala lproper zero value, O/total

elements = no volatility.

2. Volatility Topology: This is the characterizatiohhistorical volatility for a
specific system, expressed using Pareto analysis of mololutgie frequency for a

specific time interval.

3. Volatility Exposure: In the manner of risk exposure peehm [9],

volatility exposure is a combinatorial measure whasepgonents are frequency of
change and cost to change for a given change driveh ddmiponents represent
the key considerations in encapsulating a volatile poiatsoftware system, and

their product provides a value for prioritization in thethodological model.

4, Volatile Point: A place in software where changeurs. At this time, its
locality can be as broad as a module or as specificsagle identifier. Its primary

purpose is for identification of encapsulation candidates.

5. Change Driver: A requirement that changes, thus stimylsoftware
volatility. A change driver is identified by performiag‘bottom up” analysis of

historical change, identifying the most frequently changedules and

11

determining the requirements that drive their changeerGhe differences in
specific systems, volatility analysis must produce chainiyers in order to
provide relevant information that is comparable acsystems of a domain. This
dissertation particularly concentrates on enhanciee@ drivers, those that are

rooted in changed user expectations.

6. Encapsulation: More widely recognized as an attribfitdject
orientation, in this dissertation encapsulation retierhe specific act of
constructing a change mechanism around a volatile ppigduce the cost of
making a change. Encapsulation can take any mannemaftio include
parameterization, interactive tools, and documentagibimer singly or in

combinations.

The following sections describe the two models aofvgarfe volatility used in this

dissertation. The cost model describes the enhasafi@are maintenance life cycle from

the perspective of software volatility, parameterizimg key volatility attribute of change

frequency in its role in driving life cycle cost. Timethodological model proposes a

process for addressing software volatility in the dguelent phase of the software life

cycle based on change frequency. Validation of theroostel will in turn validate the

utility of the methodological model in lowering life dgaost.

1.4.2 A Volatility-Oriented Enhancive M aintenance Life Cycle Cost M odel

A parametric cost model captures the fundamental bethafvagiven effort

environment and allows the application of cost driveth known behavior to influence

12

the fundamental behavior. Development of a volatiitiented cost model for enhancive
software maintenance was undertaken to provide a farhadle for describing volatility
behavior and to support the proposed process for volatilgjysis and encapsulation.
This model has no mechanisms for calibration, atiguis not intended for use in
estimating costs of actual enhancive maintenance prsgrahe cost model consists of

two equations described below.

1. Life cycle cost of a single enhancive change d(i8&f,_cp): This equation
takes the cost to perform a single change and extetiisutgh the maintenance life cycle
based on anticipated frequency and postulated frequency dehahis equation is used

to represent the life cycle cost of an identified gjeadriver, a recurring requirement for

change:
y
SMycp = ;(SM,. O, (Eq. 1)
Where:
SM,c = Cost to inflict an instance of the change driver;
F = Change Frequency;
y = Life Cycle in Years.

13

2. Enhancive Maintenance Life Cycle cost (@b): This equation relies on the
identification and prioritization of change drivers the system to be developed. The
change drivers are then each modeled using equation 1,earestits summed in

equation 2 as follows:

Z(SMALCD)J'
SMyc =1 2——— (Ea. 2)
p
Where:
p = Overall percentage of effort to be incorporatedén t
significant change drivers expressedrby
m, = Number of significant change drivers for a given patiage

of effortp.

The determination ahis a central question of this dissertation.characterizes the
tendency of volatility to cluster in a few change drsyén other words, a certain few
changes are made regularly. Specificallin the model is the number of “significant”
change drivers of the domain. The first researchctipge characterization of software
volatility, has as its central question, “How mangmge drivers are significant?”
Expressed in percentages, a Pareto analysis of changesdenk-ordered by frequency
describes the relationship, “A% of the change drivezs@sponsible for B% of the total
change effort.” The assertion of this dissertatiothat a statistically significant A%-B%

relationship can be identified for albftware supporting a given domain, and that

14

significant values ofn can be reliably specified for each domain at a usesiiguk

percentage of maintenance effort.

1.4.3 M ethodological M odel

The specific activities undertaken in software developrte address adaptive
volatility should produce a system with lower mainteacsts, owing to the system’s
built-in flexibility. Toward this end, the following ethodology is proposed to target
development resources toward encapsulating the volatispeith the most “bang for
the buck:” those that result in the greatest maintenaaost savings. This model is not
dependent on any particular development methodology; instesteéps relate to the
canonical activities of requirements discovery, desigd, implementation, present in
some form in all development methodologies. Each seqlaativity is listed below and

described in detail in subsequent sections:

1. Identification of all anticipated change drivers. sTautivity would rely
primarily on the demonstrated volatility of existingtms, obtained from analysis

of release histories and user interviews.

2. Analysis of each change driver to assess its Wylaxposure in terms of

its frequency of occurrence and magnitude of effort.

3. Prioritization of the change drivers by their aptted volatility exposure.

15

4, Input of the subset of change drivers that are antézta account for the
bulk of adaptive change into a volatility oriented costel to produce trade

studies of encapsulation alternatives in terms of tiedative cost-benefit.

5. From the model-based analysis, development of atmearilist of

encapsulations for pursuit in system design and development

6. System developers implement as many of the encapsslatiom the top

of the list to the bottom, as the available resoaive permit.

1.4.3.1 Change Driver Identification

This is the most problematic aspect of addressing acdtwolatility, for the
essential act is one of predicting future events. Tiheioformation that provides any
chance of supporting reliable predictions of softwarautiity is the history of change in
similar systems serving similar customers. Withia tontinuum, the best circumstance is
the identification of volatile points within an exigg system for attention with perfective
maintenance; the next-best circumstance is developimgeplacement of a system with a
well-established change history and a stable custoaser. bThe first circumstance
provides the most risk-free environment for volatilitgntification, followed closely by
the second. The element of risk added in the secondr@tance comes primarily from
the change in customer expectations with the introducti@ new tool for doing their
business. This element of risk rises as the opporttmgyudy change histories of similar
systems decreases, as suggested by the categories progegmgsfyrin this section. The

concept of domain serves the task of identifying sinsjatems quite well, with the

16

expectation that systems serving in the same applicdtionain will suffer similar
pressures of change. However, assuming that systevirggsdie same domain have
similar volatility topologies is overly simplistic, nsidering that the same customers may
have different evolution requirements for each syst8m. any effort to predict software
volatility should address both historical change andpeeific expectations of the

customer base.

The analysis of historical change in a system é&si@ls its volatility topology.
This topology expresses a number of characteristittseeofystem’s change history, to
include the frequency of releases and a Pareto anafydisnge frequency by module.
Successful determination of a volatility topology assuthesxistence of release
documentation that identifies when the release occwuieal change requests the release

satisfied, and the modules “touched” to satisfy eachgghagquest.

The volatility topology is then used to identify thetgyn attributes subjected to

change. These attributes will have names such a®fsyssers,” “withholding rules,” or
“map displays” identifying data or behavior subject tongga This attribute identification
is accomplished by performing semantic analysis ofitlkes and descriptions of the
change requests that drove change of the volatile modélss.identified in this step are

the types of changes the attributes undergo, such asedéédd,” “update,” or “move.”
The combination of the attribute with the types ddraes inflicted comprises a change

driver for the system.

17

1.4.3.2 Change Driver Analysis

The intent of this step in the model is to identifg volatility exposure of the
system to the change drivers identified in the previtefs. sThe concept of exposure is
similar to the one defined for risk analysis by BogBim The two components that
contribute to volatility exposure are the frequencyafursrence and the cost to
accomplish the change. The list of change drivers fthhin the previous step of the
methodological model carry frequency information esshbli in the process of
developing the volatility topology. However, establighihe cost to perform a change
can be difficult in light of the sparse efforts to eotl such data among maintenance
organizations. In the absence of historical cosd,date number of modules “touched” to

effect a change driver can serve as a coarse indichégdiort required.

Calculation of a single-valued exposure measure in ti@enaf risk exposure

(RE):

RE = P(UO) x L(UO) [9]

Where:

UO - Undesirable outcome;

P - Probability of occurrence;

L - Magnitude of loss if risk occurs.

18

suffers from ambiguity of relative magnitude between these values. It is proposed
that volatility exposure be presented as an orderedfg@imnhere f = frequency of

change and c = the cost to implement the change.

1.4.3.3 Change Driver Prioritization

Rank-ordering of the identified change drivers is esseatiensuring that
attention is applied in development to the software comapis most likely to change.
The volatility exposures identified in the previous stapnfan important starting point in
this effort, but the actual ordering is best estaldishe review process that involves the
system engineers, project managers, and customer reptessn A number of outcomes
besides a rank-ordered list come from such a process, tRe identified change drivers
undergo a “sanity check” from review in the contextadétive importance by the
participants. Second, the participants develop an owipenstie list and its intended

purpose of directing encapsulation of likely volatile pointthe system to be developed.

The prioritized list deserves capture and control améiguration item so that
subsequent changes are effected only after a directed amchelated process involving

exposure reassessment and review by the original tigtipants.

1.4.3.4 Trade Studies

This step coincides with design activities in thewsafe development
methodology. The first activity in this step is toatatine how many change drivers will

be addressed with encapsulation mechanisms the cost model (Eq. 2). While the

19

ultimate determination of effort to be devoted to enalpen will be based on the
resources available, this determination should also depeow many change drivers

account for most of the anticipated change.

The second activity is the development of encapsulatiematives for each
change driver. Intuitively, a tradeoff between thet toglevelop the alternative versus
the cost savings as a function of cost to make a sihglege times the anticipated
frequency is the prime concern; however, charactaizaif this tradeoff is beyond the

scope of this dissertation.

1.4.3.5 Selection of Encapsulation Initiatives

In this step, the population of identified encapsulatltarrzatives is considered for
implementation. This is proposed as another reviewegsoconducted with the same
participants as the change driver prioritization. Mudtiphcapsulation alternatives for
each change driver are to be considered, both amongéehes and in their relation to
the alternatives for the other change drivers. ih this review that synergistic
relationships between encapsulation alternatives eagtelntified and consideration given
to their combination into single mechanisms. Alggrres involving data parameterization
are probably the most amenable to combination undecbange mechanism. Also, the
resources available for encapsulation efforts aretcoimsidered. The product of this
activity is a list of volatility encapsulation initiges to be incorporated into the software
development effort, rank-ordered in priority of cost-bittased on the preceding

volatility analysis

20

1.4.3.6 Encapsulation-Oriented Development

In this step, volatility encapsulation mechanismsdaneloped hand-in-hand with
the functional core of the software system, in therjpy order specified in the previous

step.

1.5 Resear ch M ethod

This research pursued two main objectives: 1) validatidhe fundamental
behavior of software volatility, and 2) validationtbé fundamental relationships
described by the volatility-oriented maintenancedifele cost model. The domain of
integrated tactical warning/attack assessment coorlatistems supporting aerospace
defense of the North American continent was chosegheuniverse of discourse for these
two inquiries. Each inquiry objective was to be mehgisioftware change data collected
from the maintenance efforts of each system indhget domain. For the two objectives,
if the objective could not be met in the target domiian it was to be concluded that the
postulations of the objective could not be universaljyliad across all domains. The
research conducted in support of this dissertation wasdmed to be complete when
sufficient data to support assessment of the proofiergeecified below was collected

from the subject domain. Each of the two inquiriedeiscribed in the following sections.

1.5.1 Volatility Validation

One of the fundamental objectives of this inquiry Yeasalidate the propensity of

adaptive software change to cluster in a relativelyl graecentage of the code. Without

21

evidence of this elemental tendency, performing viiaptediction and encapsulation
would not be worth the effort. In the cost model (Eg.this parameter is captured oy
the number of significant change drivers. The supporéegarch methodology
proscribed collection of software release data froerfollowing systems in the universe

of discourse:

1. Command and Control Processing and Display SystemQSLT&nd its

replacement (CCPDS-R);

2. Space Defense Operations Center (SPADOC);

3. Granite Sentry, both the Phase Il system anejikcement.

This data was used to establish each systeoteility topology,in the manner described
in the methodological model. From the volatility tapgy, each system’s change drivers
were identified and prioritized, again according to thehmdological model. Then, for
this inquiry, correlation between the lists was distladd, both with regard to the presence

of common change drivers and their historical frequefi@ccurrence.

The objective of this inquiry was to show that vititgtdoes cluster in certain
modules, both as a function of frequency in a singleesystnd as a correlation of high-
volatility change drivers among systems of the sameadonThe parameten was also
defined for the subject domain, the number of changerdrsignificant to enhancive

maintenance in integrated tactical warning and attasdsament correlation systems.

22

Proof Criterion 1. Given D =the subject domain, S = a given system, n; = the
number of modules experiencing frequency of impact f: For
D(S), n¢ > Ny
(For a given system of the subject domain, the numbodules
experiencing a given change frequency is greater thamuthber of

modules experiencing the next higher change frequency.)

Proof Criterion 2: Given D =the subject domain, Sn = a given system, and COL g, =
Change Object List of system Sn: For all D(Sx, Sy), rs (COL s,
COLyg) issignificant at 99%.
(For all combinations of Sx and Sy of the subject donthe
coefficient of correlation of the systems’ changgoblists is

significant at 99%.)

1.5.2 Cost Model Validation

The objective of this inquiry was to validate the fumdatal behavior of the
volatility-oriented maintenance life cycle model kgting the hypothesis. The hypothesis
was tested by comparing projected maintenance life cpdts of both the operational

and final Granite Sentry systems. The followingetiitn was established:

Proof Criterion 3: Given ASD = Change Cogt in Staff-Days. ASDgsoid - ASDGsnew IS
influenced by volatility encapsulation.

(The difference in the cost to change the old Gra&3detry from the

23

cost to change the new Granite Sentry is influencedbaility

encapsulation)

1.6 Summary

This chapter presented an overview of the concepifofare volatility, to include
three hypotheses that direct the research, a concéptuework for software volatility
that includes both cost and methodological models, aademrch method designed to
support validation of the three hypotheses. Chapter 2miiean analysis of the relevant
literature that forms the basis for the concept éfsre volatility, Chapter 3 outlines the
prosecution of the research method, Chapter 4 presengmallysis of the research, and
Chapter 5 asserts the outcomes of validating the hypesttzesl presents both
recommendations for incorporating the methodological iod®ftware processes and

directions for further research.

24

Chapter 2

Analysisof the Literature

In this chapter, the following areas are discourseld thig¢ intent of establishing
the foundation for the research presented herein: fiyational research, 2) previous
direct research, both with regard to software vaatls defined in Chapter 1 and
software maintenance cost modeling, and 3) relatedrodsedth regard to software

volatility prediction and encapsulation.

Central to the discussion of any aspect softwareterance is the definition of
categories of changes conducted during maintenance. Qyiggwanson [29] proposed
the categories of corrective (response to failuregptive (changes in data or processing
environments) and perfective (increasing efficiencyfguenance, or maintainability).

Lientz and Swanson later surveyed 120 organizations andedposignificant
subcategory within perfective maintenance, enhanceniesér demands for
enhancements and extensions) [22]. Van Horn, in [3fég);soa concise definition of
enhancement: “modification to meet new or unrecogniged requirements.” These four
categories of maintenance serve as the basis faveiscin this study, with prime

attention paid to enhancements.

25

2.1 Motivational Resear ch

In order to understand the need to address evolvabityfofare, it is necessary
to visit the foundational research into its naturée basic need for addressing the cost of
maintenance has been presented many times, supportediypbmghe proportion of
software activity devoted to maintenance. This peéeggnhas been measured at
anywhere from 50% to 80%. Further, the proportion ofreffevoted to enhancements
has been variously measured and surveyed in the range db3®3%o (see Dekleva and
Zvegintzov [12] or Hops and Sherif [19] for compendia of gisidialways the largest
proportion in any of the reports. It should be cleat #itempts to reduce the cost of
enhancive changes to software are targeted at thgocgtef changes with the most

potential for cost savings.

Belady and Lehman [6] first described a sub-discipling tiz@ned, “program
evolution dynamics” in 1974, proposing three laws of evahatig behavior based on
statistical analysis of releases of the IBM OS/360 atey system. The first rule sums up
the elemental state of software volatility as falo “A system that is used undergoes
continuing change until it is judged more cost effectivikdeze and recreate it.” Parnas
published a paper in 1979 [24] where he clearly defined thenestances that call for
“design for change.” It was intuitively obvious to teessearchers early in the evolution
of software development into “programming in the lardeit tanticipated change should

be a key motivator in requirements analysis

26

Van Horn, in [30], calls for “evolvability as a desigriterion,” and the
“(preservation of) evolvability during evolution.” Hower, he then asserts that
preserving evolvability is to be done through perioditroesuring of software. He then
implies that, “we need not be so concerned with haviagest structure when the
software is created. Any flaws in structure can ladukas the software evolves.” This
thinking runs counter to the use of program structure aslaf evolvability, presented in

Section 2.2.

The need for software evolvability has also surfanedanagement and policy
circles. Horowitz [20] provides examples (mainly fr@mD) that illustrate the benefit of
timeliness’ independence from cost, the increasingafosiintenance in the later years of
the life cycle, and the importance of specifying and adfe¢o a structured architecture in
the subsequent incorporation of major system changdsasyaorting to new machines
and upgrading system services. He also points out thengnfie software developers
to spend much effort on implementing a customer’s funatiand performance
requirements as understood at the time, with little eonwith how they will change
during the life cycle. Most telling is his cite of annamed survey that asked 123
businesses what they thought were the government’simpsttant concerns when
awarding software contracts - ease of maintenancenamdenance cost ranked 8th and
9th out of 10. His statement: “The basic problem iddblk of a strong requirement for
modifiability that facilitates software maintenaricélowever, the basic need for
changeability engineering is well-recognized by DoDwalffe managers, substantiated in

the recommendations of the Software Logistics Workg@6pwhich refers to

27

“quantify(ing) the propensity for change in weapon syssg¢ri{(developing) a model for
determining the optimum level of maintenance at whidftware changes should occur.”
Horowitz [20] provides a concise summation of the probl&uftware does provide

flexibility, but it must be designed from the start watih architecture that allows it to do

SO.

2.2 Previous Research

This section presents the foundational researchi®dissertation. Both the

process model and the cost model are substantiated Higaigmprior work.

2.2.1 Software Volatility

The first significant discussion of software volatilivas presented by Belady and
Lehman in [6]. They called it “complexity” and defineéds, “the fraction of the released
system modules that were handled during the course oéldase.” Their notion of

volatility forms the basis for the operational defom described in the previous chapter.

A few researchers have pondered the phenomenon oifityoila software, and
have proposed methods to deal with it directly relateti¢onodels presented herein.

Land [21] provided the following fundamental concepts:

1. Uncertainty of potential software changes grows grdae further in time
volatility point prediction is attempted, to the pointesd a cost-feasible design
cannot be conceived to meet the range of expected champes future time is

called theforecasting horizon.

28

2. Limitations in tools and techniques prevent developmgsystems with

infinite flexibility.

3. “It is generally cheaper to build a dedicated, highly ifipeban a

generalised, flexible one.”

4, However, the cost of a flexible package may be chefipgecost can be

distributed among multiple customers.

Land’s concepts provide important constraints to expeaabf volatility analysis and
encapsulation, particularly with regard to the forecgstiorizon. It should be evident
that this horizon will be shorter than most softevlifie cycles, and that a certain amount

of volatility cannot be anticipated.

Land provides guidelines for designing systems that meeigoiy user needs, to

include:

1. Use analysis, design and evaluation techniques tlavenuser

participation to achieve as accurate a model of tHewadd as possible.

2. Use design methods which incorporate experimentatidpeototyping.

3. Attempt to distinguish between the stable and volasifgects of the

system.
4, Avoid early commitment to a particular design.
5. Adopt designs that can cope with a range of possiblestutur

29

6. Use future analysis to craft viable predictions. d_afiers a methodology

for future analysis as an appendix to his paper.

7. Build flexibility into the system.

8. Use new hardware and software technology to develalp systems that

are easily replaced.

Land’s treatise provides an excellent bounding of tbpeof the problem, that of
dealing with a system’s ability to meet multiple possiotures. His particular emphasis
on user involvement can help to address volatility thetonus is still on developers to

present volatility as a concern to involved userkdfrtfeedback in that area is expected.

Podger [27], “postulates that any system can be divided in

1. An inner zone of basic values and principles, whighould take a

revolution to change.

2. An intermediate zone of general procedures whichuinje to change
but where the lead time between the change being foledudend required is quite

long.

3. An outer zone of specific procedures, subject to napiel mand frequent

change.” (from Land [21])

30

Podger’s topology implies a continuum of volatility reqoiests based on the
needed response for a change. This response timewrontforms a component for

determining the prioritization of change drivers.

However, it is with Hager [16, 17] and Baekgaard [5] thatfuhdamental
precedent research in software volatility is presentuth describe specifically a
methodology of volatility analysis that is fundamentattmposed of an identification
activity and a prioritization activity. Hager proposegapsulating volatility with program
structure incorporating information hiding and abstragtenParnas, while Baekgaard
advocates a combination of program structure and pararagimn. Baekgaard also

offers the following questions to drive volatility aysit:

1. Which system properties are likely to change?

2. Who should be enabled to make the changes?

3. How are volatile properties to be bound to the sofvio facilitate change?

The second question implies an important demarcatiortémrdming the manner of
addressing a volatile component of a system: that adidgovhether a particular change
mechanism is to be manipulated by programmers or sysiers. At this demarcation,
the cost to effect a given change will drop significanthen responsibility is migrated
from the hands of the programmers and their mainteranooess to the users.
Correspondingly, the implementation of a change meahnamsible by system users will

cost more than a change mechanism targeted to theemaiice process. This

31

dissertation proposes to extend their conceptual defigitio a practical, results-oriented

methodology suitable for incorporation into any sofevdevelopment endeavor.

A few “real world” software development efforts haateempted to directly
address software volatility and the need to predict wheftevare changes will occur in
maintenance. Hager, in [16, 17], illustrated the previodis$cribed concept of hiding
volatile system properties to promote changeabilitpyd-[14] describes the efforts of
the F-22 Advanced Technology Fighter (ATF) contractogkbeed-Martin Corp., in the
identification of historical volatility trends in ogh software-dependent fighter aircraft for
use as a guide in the design of F-22 flight software. Fletydl., determined that, at the
Computer Software Configuration Item (CSCI) level, itifiermation required to
effectively target change mechanisms was the protyabilchange, the size of the change,
and the category of the change (Corrective, EnhanaivAdaptive). They also presented
survey results from software design leads on the F-16p@iGram on the “predictive
volatility” of the various software components ofsthighly volatile program (many
different software versions to support changing missimneijgn military sales, etc.). A
more direct experience with software volatility ig tBranite Sentry program, one of six
hardware/software upgrade programs that comprise the Cleeldsuntain Upgrade, a
$1.6 billion overhaul of the missile, air, and space wagrdata correlation systems of
North American Aerospace Defense Command (NORAD) amitktl States Space
Command. This multi-phased program used the change exgefiencover 20 years of
software releases to the operational warning syste@seyenne Mountain, plus their

own experience with three previous phases of Graniteryseéevelopment, to attempt a

32

prediction and encapsulation of volatility points in final system, to be delivered for
operational use in the latter part of 1996. The experentcthese programs provide
valuable insight toward the development of volatilitydicdon and encapsulation
methodologies and the need for a concise methodologgdhate easily and consistently
applied during the event of software development. Thei@r8entry program was

chosen to contribute to the data collected to suppartibsertation.

2.2.2 Software M aintenance Cost M odeling

Parametric cost estimation provides an unambiguous V¥entle presentation of
cost relationships. Mathematically, parametric modedssets of processes where system
characteristics are mapped to appropriate ranges oflcddst Application of parametric
models to software development rides a significant bédgsearch, most of it intended
to provide cost estimation tools for software develomtrpeactitioners. However, the
number of non-linear influences of software developrikerp it from being parametrically
modeled without use of post-model modifiers. Still, tleeigline offers a concise method
for describing cost relationships for use in process inadidation, the intent of this

dissertation.

To date, only a few extremely fundamental cost k@atatiips are presently
understood with regard to software. The two most witkdggnized cost relationships,
as evidenced in their application in a large number sif c@dels, is the linear relationship
between software size and the effort to produce it tladiistribution of effort over

development phases based on the Rayleigh model. Ddwitedarseness, these two

33

relationships provide a foundation upon which the vaitalf software cost estimation
can be baselined. Probably the most significanientte upon estimation variability is that
of the subject domain, as evidenced in its visibilityhie modifiers and structure of most
cost estimation models. Most manifestations of donmacost models are in the form of
“complexity,” with the continuum of scale ranging fromfiarmation system applications
“to” real-time and embedded applications. COCOMO’s “md@@’is the most well-
known manifestation, with contributing attributes ofamizational understanding,
experience with related systems, conformance witheptablished requirements and
interface specifications, concurrent hardware and proeatkwrelopment, need for
innovation, and product size contributing to the selaatibeffort and schedule equations.
Note that identification of these attributes is eakto proper application of COCOMO’s
mode, for there is no universally accepted definitionarfiplexity. One of the
fundamental assertions of this dissertation is thatiitation of domain is essential for

the categorization of software volatility.

The effort to define cost relationships related titvsare maintenance is long-
running. However, most efforts to develop maintendifeeeycle cost models have not
reached a level of granularity below the softwareasae and few are supported with
validation based on actual project costs. This previessarch does provide valuable
insight into the primary influences of maintenance émsuse in developing a change-

level, volatility-oriented cost model.

Holchin [18] provides a summary of the primary mainteeacost estimating

relationships (CERS) described in the literature. mbet granular of these is the

34

maintenance/development effort ratio, which describaistenance life-cycle cost as a

percentage of the overall life cycle cost. Boehnd@cribes this relationship as follows:

E, =(M/D)E,

Where:
M/D = The maintenance/development ratio;
Eb = The effort required for development;
Ev = The effort required for maintenance.

The maintenance/development ratio is applied to tloetetquired for
development to obtain the life-cycle effort requiredrf@intenance. Holchin relates
estimates for the proportion of life-cycle cost dedaie maintenance from 40% to 82%,
which is consistent with other observations inliteeature. From this variability, it
should be apparent that this relationship serves noigabgtirpose in describing
maintenance cost behavior and should serve only@sgh indicator of the magnitude of

the problem.

Holchin also describes a level-of-effort relatiopdiased on programmer
productivity in thousands of source instructions per progremamd provides one
observation of maintenance coverage related to irraldnd aerospace software - 8K -
10K SLOC per programmer per month. This relationshigisifstant qualifier, like that

of most software cost estimation relationships, gedeent on the subject domain.

35

But probably the most well-recognized maintenance a@ibsbute in the published
models is that of annual change traffic. Usually exqg@ss a percentage of code
changed in a year, this attribute is a direct applicaifdhe operational definition of
software volatility in costing maintenance effolt.must be recognized that this attribute
is dependent on software size as a scaling factor. spMidad use of this volatility-
oriented attribute is evidenced in an excellent compauig the life cycle support

capabilities of the most well-known software cost ntiageools by Ferens [13].

Probably the most well-known maintenance cost madsldescribed by Boehm

[8] as part of COCOMO:
MMA = (MM Nom)(ACT)(PM)

Where MM, is the annual man-months, M4, is the man-month estimate from the
nominal intermediate equation, ACT is the annual charadiic (the fraction of the code
changed per year), angh B the product of maintenance multipliers. This model
recognizes the fundamental contribution of volatildyntaintenance life-cycle cost as
ACT. Itis interesting to note that the current pragdsr COCOMO 2.0 [1] abrogates
both volatility and the life cycle cost approach by adding maintenance as reuse.
REVIC [3] is an automated version of COCOMO that uses project data to calibrate
the original COCOMO equations and provides additional nekphase distribution data;
it takes the COCOMO maintenance equation and alloeatasal cost to a fifteen-year life

cycle. It also accelerates annual cost in thetfmste years to account for resolution of

36

residual errors from development. For both COCOMO dBWIR, no validation is

presented of the behaviors of volatility or residuebes using actual project data.

It should be clear from this review of the stateadt estimation that there is a
need to carry software maintenance cost estimadi@nhore detailed level, and to
validate the resulting model with actual project resultkis dissertation proposes a new

level of granularity based on software volatility.

2.3 Related Research

In this section is presented research that, whileinectly related to the topic of

software volatility, contributes perspective, defimisoand techniques.

2.3.1 Volatility Identification

While the methodological model proposed herein for adidgessftware volatility
has its roots in the methods specified by Hager [16] aakdaard [5], many of its
specifics come from the techniques of risk analysiselBn in [9] provides a concise
overview. Use of the risk process model as the bastbe volatility analysis
methodological model provides a well-understood proceseWanmk that captures the
need to prioritize volatility encapsulation alternagigamong themselves. This allows
project resources “robbed” from implementing functiogadihd performance requirements
to be directed where they will do the most good and giw&dility encapsulation the best

chance to survive in software design and implementation.

37

2.3.2 Volatility Encapsulation

The research to date that directly addresses the engmef software
changeability has mostly focused on generic attributesodifiability without regard to
their cost tradeoffs. One publication, [4], taxonomittee generally understood attributes
that make software more maintainable, but it doesddtess the specific process of
making software more changeable. Another study, [10]jfgsesoftware quality factors
in three categories: performance, design, and adaptakiosadaptation category
contains the following factors: expandability, flekilgj interoperability, portability, and
reusability. Of note is their chart that describesitp@ and negative interrelationships
between the factors in all three categories. Inqudar, the chart shows the negative
effect of increases in both expandability and fleikjbdn virtually every performance
factor, which emphasizes the need to prioritize chanlggaequirements in order to
properly trade them off against performance. The metbgial model provides two

places where such prioritization is undertaken.

Parnas, in [24], provides a key distinction in encapsulathat between software
generality and software flexibility. He defines geffigras the ability for software to
“...be usednithout changen a variety of situations,” and flexibility as théility for
software to be “.easily changedio be used in a variety of situations.” Parnas’ issue
between the two was the “run-time cost to be paidjémerality” vs. “the design-time
cost to build flexibility.” It should be recognized thhe fundamental difference between
generality and flexibility is where lies the respoitisjofor adapting the software, in the

users or the developers. Parnas further stated thatgécision (between generality and

38

flexibility) should be a conscious one.” Volatilitpalysis provides the context in which to

make these decisions, based on anticipated frequencammjeland the cost to change.

The research topology on the role of software tmodsipporting change is
comparable to that for compiler optimization: many ga®és, no unifying theme. In
some cases the purpose of a given tool has nothingwdtlids eventual use as a change
mechanism; data base management systems, for exgmyle, significant role as a
repository for configuration and behavior parametesome software systems. Martin
[23] provides extensive discussion on design techniquesititafe maintenance, to
include source code organization and structuring and useabds¢ management
systems and fourth generation languages; however, hendbdiscuss the process of
predicting and encapsulating volatility. A software congion technique called
“parameterized programming” espoused the encapsulationtafsefparameters deemed
likely to change in various mechanisms to facilitaisesof change. Goguen provides a
complete treatment of parameterized programming in [1&ling for language facilities
to support the parameterization of both data and algagitHaxperience revealed that
parameterization did not necessarily make changing fhease less complex [28], and
that the effort spent encapsulating every software peameasily surpassed the marginal
cost-benefit of changeability [7]. It should be cldsat volatility analysis would serve to
focus the application of parameterization and otherpsudation techniques to the places

where they would produce the greatest benefit for thie cos

In summary, volatility-oriented methodological and amsidels offer a unified

process for comprehensively addressing the concernsoandpts identified in the

39

preceding research. The need for such a framework baslearly and repeatedly
stated, and the models provided herein offer a pracpqditation of the preceding
research for use by software practitioners to ideatify prioritize encapsulation
mechanisms in terms of their benefit versus costditionally, the research conducted to
validate the hypothesis forms the framework for estiaibp the volatility topologies of

other domains in subsequent research.

40

Chapter 3

Research M ethod

The research conducted to support the hypotheses carigists components: 1)
validation of the fundamental behavior of enhancivatility, and 2) confirmation of the
positive cost-benefit relationship of enhancive \litlaencapsulation and maintenance
cost. These two components were supported by an anafysstorical change within a
chosen domain to determine volatility topology and cometmange drivers, and then a
cost-benefit analysis of a rudimentary volatility itfcation and encapsulation effort
conducted by one of the programs within the chosen donesipectively. The
subsequent sections describe the grounding concept of softve@ntenance, the target
domain for this study, the data collection process, badnanipulation methodologies

used to yield relevant information for analysis.
3.1 The Fundamental Process of Softwar e M aintenance

In order to provide a framework for the data collecaod analysis undertaken in
this dissertation, the software maintenance prosedsscribed in this section. This
description is essential to understanding the implicatidtise correlations asserted in this

inquiry.

The on-going act of software maintenance involvesdbntification of the need

for changes to software in use, and the controlleidtiofh of these changes. This

41

identification can and usually does occur at almost iamg/ during the maintenance life
cycle, but the corresponding infliction is usually accashgld in groups at planned
intervals. The delivery for operational use of sofevia which a set of identified changes
has been incorporated is commonly known as a relé&fie there are instances of
software maintenance life cycles where identifiechglea are inflicted dynamically without
grouping, it was important to select a subject domaithisrinquiry where regularly
scheduled releases were implemented. Regular releasetepalata collection point
around which to establish frequency of occurrence, sbential characteristic of software

volatility.

An identified need for software change will ultimateggult in the modification of
one or more of the software system’s constituergaidj The nature of this modification
is important, for it results in a new system thatamehow different. Most discussions of
software modification are content to deal with thitvgare states, that is, the before- and
after-entities surrounding the act of change. But thelWmodification” is a verb,
implying activity that has characteristics of inténesthis inquiry. The range of activity
involving modification can be completely described imm® of software size by the acts of
addition, change, and deletion. That is, the possihlgeraf activities available to a
software maintainer are to add new code to the sadtveiiange code already in the
software, or delete existing code from the softwdtenay be argued that change of code
is elementally the deletion of code followed by itslaeement with new, similar code.
However, inspection of change histories of softwakeals the significance of change as a

distinct category. In fact, a significant sub-categii@n of changes becomes apparent:

42

1) appending new instances of previously existing obj@ttalteration of existing
instances of objects, and 3) deletion of instancedbjetts. There are significant
differences in magnitude of effort and impact to thevemfé between the addition of a
new map display to a library of map displays and the pw@tion of the capability to
display maps where none previously existed. So, fopalngose of describing the nature

of an individual volatile act, the following verbs wike used through the rest of this

document:
1. add: incorporate a new capability that did not exagbre.
2. append: incorporate a new instance of a previouslgrexisapability.
3. alter: modify an existing instance of a capability.
4, delete: take out an instance of a capability; the fuedéal capability, and

perhaps other instances, remain.

5. remove: take out all aspects of a capability.

At the beginning of this inquiry, it was determined tbsttablishing the frequency
of change of the constituent objects would be the las&ibsequently determining the
existence of regularly occurring change drivers. Theoméor this determination was
that software objects such as modules are unambiguoustifizdde due to the need for
development tools to recognize them. Therefore, ii@dtile” was chosen as the entity
for identification of change points. In the systerhthe subject domain, various types of

modules were identified, containing such objects as aata, and, configuration

43

information. For this inquiry, no attempt was madedtablish meaningful correlations
based on module type, although this effort will have fiigmce in subsequent research on
volatility encapsulation. The maintenance processethé systems of the subject domain
all captured information on the modules affected for eactstituent change of a release,
which added to the significance of selecting modules asgehpoints. It must be
recognized that the level of change point granularitygmtesl by a module can vary from
system to system; some programming languages encourageatiecton of related
entities in their compilable objects than otherswldver, the collection of change
information at levels lower than the lowest ideabfe configuration item is problematic;
indeed, there are few maintenance organizations whereollection of change

information down to the module level is possible.

Based on the above considerations, selection ofjacsutmmain for this inquiry
was based primarily on the existence of historieggiilarly scheduled releases, with

release documentation including named changes and théwemtsaffected modules.

3.2 Description of the Domain

The domain chosen as the target of this inquiry isdhmtegrated tactical
warning and attack assessment (ITW&AA) correlationesys. ITW&AA is the primary
mission of the North American Aerospace Defense CanthfNORAD), a combined
command consisting of American and Canadian militaryefe. Headquartered at
Peterson Air Force Base, Colorado Springs, Coloradd3ADis responsible for

defending the North American continent from air, nesand space threats posed from

44

hostile foreign countries. Its primary command ceftiecoordinating these operations is
located at Cheyenne Mountain Air Force Base, sou@otifrado Springs. ITW&AA
correlation systems take event messages from ayafisensors located around the
world regarding air, missile, and space threats to théhMomerican continent and “fuse”

the information into a coherent depiction for usedryia military decision makers.

Each of the three mission segments has its owelation system: 1) Granite
Sentry for air correlation; 2) Command Center Prdngsand Display System -
Replacement (CCPDS-R) for missile correlation; an8ce Defense Operations Center
(SPADOC) for space correlation. Procurement of edithese systems was commenced
separately, then later consolidated under the $1.8B Cheyéountain Upgrade (CMU)
program. However, program consolidation did not reswdtdhitectural cross-
fertilization, and the three systems were essgntaleloped independently. They do
exchange event information according to well-definegiGa using a common inter-

mission bus. The following sections overview eacthefthree systems.

3.2.1 Granite Sentry

Granite Sentry provides correlation support to the paedovho staff the Air
Defense Operations Center (ADOC) in Cheyenne Mou#tiaiRorce Base. The
operational version of Granite Sentry was deliverethéoAir Force in 1992 as Phase llI
of an incremental development. The Granite Sentrgnara was originally developed in-
house by military programmers, but development was tiedasferred to the Lockheed-

Martin Corporation (LMCO). The operational versisrscheduled to be replaced in early

45

1997 with a “final capability” version. The softwarensgsts of approximately 300,000
source lines of code that execute on at least twodbigquipment Corporation VAX
8550 computers (total delivered: 5) and networked VAX workstatiocated in the
mission work centers. Granite Sentry software it&r almost entirely in Ada, although

command scripts and graphical definition files are afterched in enhancive maintenance.

Besides providing historical change data to support the id@nalysis, an effort
by Lockheed Martin to identify and encapsulate volatifityhe final version will be

analyzed to validate the cost-benefit of addressingvaodt volatility.

3.2.2 Command Center Processing and Display System - Replacement (CCPDS-R)

CCPDS-R correlates inputs from land- and space-bons®eand provides
display systems to assist NORAD in its mission to pl®W.S. and Canadian decision
makers with unambiguous warning information of strateggsifa attacks. The CCPDS-
R program replaced correlation systems located at Cheydountain Air Force Base,
Offutt Air Force Base in Omaha, Nebraska, and at tgoNal Military Command Center
in Washington, D.C. and provided display terminals to @drfsl. alied command centers
worldwide. The target of this study is the CCPDS-R “G@n” correlation system
located in Cheyenne Mountain. Its software consit#®0,000 lines of Ada code

running on 2 networked Digital Equipment VAX 6000-530 computers.

46

3.2.3 Space Defense Operations Center (SPADOC)

SPADOC correlates the inputs of radar and optical setesupport the
cataloging and tracking of space-borne objects, as wellaviding information to

support warning of attack from space.

Granite Sentry and CCPDS-R were both developed iAdheprogramming
language by Lockheed-Martin Corporation and TRW, respécti@PADOC was

developed in FORTRAN by Loral Corporation.

3.3 The Data Collection Subject: The Space and Warning Systems

Center (SWSC)

The SWSC is responsible for maintenance of commaddaantrol and
communications systems that support NORAD and U.S. Spaenand operations in
Cheyenne Mountain. It is a directorate of the Sf@®&tems Support Group (SSSG), a
unit of the Air Force Materiel Command. The SWSC gormed the above mission
for over 25 years, and has developed a well-behaved prmcessrdinate the
maintenance of the hundreds of sensor, communicatorelation, and display software
systems comprising the integrated tactical warning aaglatssessment (ITW&AA)
network. It is through the good graces of this orgaminadind the integrity of its
maintenance process that this inquiry into softwaltatiity is supported with complete

and concise change history data. The following is arge®n of this maintenance

47

process, provided with the intent of communicating a petseefrom which the data

presented in this section is analyzed.

All software systems that belong to the ITW&AA netk participate in a
coordinated process of maintenance updates referredhe asertical release process.”
While each system’s maintenance organizations aectér make whatever “stand alone”
changes they deem necessary, all systems must coerdiratges that affect other
systems in a series of review boards. In the chaeoordinated change, a “generic”
standard change form (SCF) is written by the requirintypatich is then presented to a
board for impact analysis. Each system that idesit#ieimpact based on the generic SCF
is responsible for writing a “corollary” SCF to irggite their part of the change. Another
board decides on the content of vertical releasesstimgsof generic and accompanying
corollary SCFs, nominally delivered every six month&rtical releases are named using
the last two digits of the year in which they arewdetd, appended with a sequence
number, e.g. “95-1". Inclusion of a generic-corrollaryFS¢@t in a release gives each
participating maintenance organization a common delidatg to aim for to ensure that
all systems remain interoperable after the releéfsgny organization subsequently

determines that it cannot meet the release datatwitorollary, the entire SCF may be

backed out of the release in a coordinated fashion.

3.4 Method: Establishing The Nature of Volatility

The first objective of this part of the inquiry wasdetermine how to characterize

volatility. The fundamental meaning of this charagggion should ultimately support

48

decisions by program managers on where to best tasgriroes to mitigate volatility.
However, even before characterization is undertakem st be recognized that there
must exist a certain fundamental behavior of softwatatility, that of regularity of

change in a small percentage of the software. If; v, the change inflicted upon a
software system is uniformly spread across a large ptiopasf the system, then the cost-
benefit of expending resources to encapsulate volasiliyestionable. The data collected
and presented in this part of the inquiry was targetedtablishing meaningful measures

of volatility and identifying its non-uniform distributioin the subject domain.

3.4.1 Change History Data Collection

In order to characterize the nature of volatilitgimbenance releases from
software-based systems with well-documented histofieeange were studied to
determine what proportions of the software were teddor enhancive modifications by
frequency over a contiguous period of time. Absence @rmgvelopmental incursions
such as incremental deliveries was determined to baportant constraint to the series
of releases considered, for incremental deliveri@sdhice new parts of the system with
no previous volatility experience. These new partsateeRrperience the same volatility
potential for the studied period of time as do the reth@tystem. Characterization of
their volatility cannot thus be compared to the réshe system under analysis. This
proved to be a major limitation in data collectior, &b least two of the ITW&AA
systems in the subject domain had experienced receetriantal deliveries that reduced

the amount of contiguous time under maintenance conskgerab

49

For this inquiry, a goal of five releases worth ofitiguous data was established,

but was only met for one system. The data dictioaatgblished to support data

collection is given in Table 3.1:

Source
Level Nomenclature Definition Granite CCPDSR SPADOC
Sentry
Release Title Designator used| Code Turnoverl CTR Version
to identify the Report (CTR) Description
release Document
(vDD)
Release Operational Date Date release WaSCF Data SCF Data SCF Data
first put into Base Base Base
operational use
Change UCN Alpha-numeric | CTR CTR VDD
designator
assigned to each
change
Change Title Descriptive title | SCF Data SCF Data VDD
assigned to each | Base Base
release
Change Mod/Fix Modification/ Fix| CTR (Second | CTR (Second | CTR (Second
Categorization to last letter of | to last letter of | to last letter of
UCN) UCN) UCN)
Module Name Name of module| CTR CTR VDD
as known to the
compiler, usually
a file name
Module Category Type of module,| CTR (Module | CTR (Module | VDD
e.g. package name name
specification, datg extension) extension)

file, etc.

Table 3.1: Change History Data Dictionary

The two major sources of affected module data were Cad®ver Reports

(CTRs) (CCPDS-R, Granite Sentry) and Version Desonddocuments (VDDSs)

(SPADOC). There is a fundamental difference in therssgion of these two products

that renders an inconsistency in their interpretatiGitRs are developed for each

50

software build delivered during the release developmentidBaie an intermediate
release given to the testers. Given that errorgamashusually do) exist in the initial
implementation of a change, modules that appear inrgiefiild of a release for a given
change can appear again for that same change in subskegidst CTRs thus yield
different touch counts than VDDs, which report the maglaféected by a given change
reported once, no matter how many builds contain thaggd module. The same
document (VDDs or CTRs) was not available for akkéhsystems, so a consistent

definition for touch count could not be applied.

The number of releases required to achieve significante tabulation will be
addressed in the section on analysis. All threesysuse the same release title

nomenclature, so the data coverage is presented in 3.@ble

System 94-1 94-2 95-1 AOC-p 95-2 96-1 96-p 9711
Granite Sentry N/A X X X

CCPDS-R X X X X X X X
SPADOC N/A X X X
Table 3.2: Module Volatility Release Coverage Data Available

X Used in module analysis

The data described above was provided by the SWSCdrcbay. OCR
equipment and text editing software was utilized to produaadgheets of the data
suitable for analysis. The SPADOC 94-1 and 94-2 releasesnot used in this analysis
due to the delivery of an “acquisition release” in titerivening period that disturbed the
continuity of the system with major modificationsttiuld have invalidated the module

volatility metrics.

51

3.4.2 Change History Data Reduction

In order to perform the analysis required to substantia proof criteria, change
frequency tabulations were compiled for each systereo$tibject domain. Each change
frequency tabulation consists of a sorted list ofralmodules touched for each change
made in a contiguous series of releases. This tabuiatfresented as a list of modules
sorted in decreasing order of frequency of change.intpertant to understand the
structure of this presentation, for it forms the bapisn which all of the subsequent
volatility relationships are established. For a gisgstem, the modules at the top of the
list are impacted by more change over time than modhdgsappear lower on the list.
Any touch count greater than 1 is an indicator of vidigtsignifying that such a module

has relevance in at least two or more enhancivegesa

The first reduction accomplished was to cull out the’ ‘thanges in order to limit
the scope of the analysis to enhancive maintenaategorized in the subject domain as
“modifications.” The essential indicator of voldtilis frequency of change, so initially the
module occurrences across all releases were tabulatteddio system. Subsequent
inspection of the data from the subject domain revaaledase where a module was
touched multiple times by multiple changes in one releasgnot at all in the others. It
was recognized that this case rendered no value in tdrmpmedicting change frequency,
so the count of the number i eases where a module was touched was substituted.
Specifically, if a module was touched at least oncerglemse, then a count of “1” was
established for that module in that release. Thisioteprovided a count that reflected a

frequency of change, based on the fact that releasesregularly scheduled in all three

52

subject domain systems. Change frequency tabulatiorsdeeeloped in the following

format for each of the three systems:

Module Release 1 Release 2 Release B Touch Cpunt Relmase
MODULEA 3 2 4 9 3
MODULEB 2 1 3 6 3
MODULEC 2 1 0 3 2
MODULED 1 0 0 1 1

Table 3.3: Sample Change Frequency Tabulation

It must be recognized that the touch count can havdicagice along with the

release count in characterizing volatility of a giveodule. However, for this inquiry,

inconsistencies in the means of reporting affected regschdtween systems of the subject

domain prevent a meaningful interpretation. Therei@mlease count was identified as the

primary metric for the characterization of volayilit

The module change frequency tabulations developed forodédlol systems of the

subject domain are presented in Appendices A (SPADOCI@DS-R), and C (Granite

Sentry). Inspection of the data revealed the follgygnmmary metrics, useful in

characterizing module-level volatility at a glance:

Metric SPADOC CCPDSR Granite
Sentry
Number of Modules in System 3768 4353
Number of Modules Touched > 0 288 749 259
Number of Modules Touched > 1 90 162 21
Number of Modules Touched > 50% 90 14 21
Maintenance Focus 64% 20% 6%
Volatility Focus 20% 4% 0.5%
Volatility Concentration 31% 22% 8%

Table 3.4: Summary Volatility Metrics

53

The module counts were chosen for their potentialfeignce: “>0” represents
modules touched in at least one release of the subjat pehich provides information
on how much of the system receives attention int@aance. “>1" represents modules
touched in more than one release during the subject pariach represents the threshold
of volatility according to the operational definitioModules touched in more than one
release during the subject period experienced a phenonemnaeut “revisit” for this
inquiry. That is, a volatile module is one that hareed attention in two or more
releases separated by the significant time betweeases. “>50%" represents modules
touched in more than 50% of the releases of the syigeictd. This percentage was
arbitrarily selected as an threshold of significariatidy per the operational definition;
due to the small number of releases available for SP@RNd Granite Sentry, this
threshold has no significance. For CCPDS-R howekierseven releases of change
history did present a significantly smaller number ofimes with release counts > 50%

for consideration.

The percentage metrics represent fundamental relapsristtween the counts

described above. Each metric is defined as follows:

1. Maintenance Focus: The percent of the system todcheahintenance
during the subject period (Number of modules touched >0 / Nuailveodules in

system).

54

2. Volatility Focus: The percent of the system toucledrfaintenance in
more than one release during the subject period (Numlmeoddles touched > 1/

Number of modules in system).

3. Volatility Concentration: The percent of the syst®uched for
maintenance that was touched in more than one rglHaseber of modules
touched > 1 / Number of modules touched > 0). This metoicighes a
normalized volatility proportion suitable for comparisamongst the systems of

the subject domain.

The most important analysis supported by module vojatiiits the establishment
of the concentration of frequency of change in aiglgtsmall part of the systems of the
subject domain. This was accomplished by tabulatinguahgber (n) of modules with

each change frequency (f) in all three systems; fpven n, ne > n.q:

Number of Releases (f CCPDS-R Granit¢ SPADOC
Sentry
5 1 -
4 13 - -
3 44 - 45
2 104 21 45
1 587 238 198

Table 3.5: Change Frequency Summary

With the exception of ;= ns for SPADOC, all other change frequencies exhibit the

condition R > ny;.

55

3.5 Method: Identifying Cross-System Volatility Correlations

An activity essential to providing information to sedre developers on what
attributes of software to encapsulate is the identifioaof common change drivers across
systems of the domain. “Commonality” has two dimemsj 1) the degree of occurrence
in systems of the domain, and 2) the frequency of oaocers the systems where the
change driver occurs. To determine change driver conlitypiitals necessary to develop

the same sort of topology as developed for software coems.

3.5.1 Cross-System Volatility Data Collection

The original intent of this dissertation was to deliee change drivers for changes
of the subject domain using information from the primarginge document, the SCF. In
this way, the change driver identification technique d¢doél developed to be applied to
systems maintained with a nominal degree of processvekkr, the act of change
documentation is highly dependent on the individual judgmeptagrammers and
analysts regarding the proper descriptive words, resultiagnitle variety in the
application of the English language in change titles aod skescriptions. Additionally, it
was revealed during inspection of the changes from thecsudomain that a few were
actually containers for multiple related changes. kample, one SCF in the Granite
Sentry collection held the title “Database Changéhis SCF turned out to encompass

changes to three distinct databases, a fact not dierivam the SCF form.

Consequently, other documentation was eventually itkhtid support the

change driver analysis. The SWSC directs the develapmh@nset of documents during

56

the analysis, design, implementation, integration, esting of approved changes. The
Requirements Analysis/Design Intent (RADI) document iseliged for each change
selected to be incorporated into an up-coming releadegantains detailed descriptions
of the modified system requirements, tagged for tracatalithe original system
requirements document and the appropriate test caseshdige descriptions used to
accomplish change driver identification were taken fthenintroductions of these
documents. The following table identifies the reledises which RADI change

descriptions were obtained for change driver analysis:

System 94-1 94-2 95-1| AOC-p 95-2 96-1 96-p 97{1
Granite Sentry N/A

CCPDS-R

SPADOC N/A

Table 3.6: Change Driver Release Coverage Data Available and used in

change driver analysis

3.5.2 Cross-System Volatility Data Reduction

Even with the concise descriptions extracted fronRABI documents, the
wording was sufficiently inconsistent to render automhaEmantic analysis impossible. A
scoring technique was developed to identify the constitcleanige drivers of an SCF in a
two-step process. First, the generic changes accoeglistihe SCF were identified as

verb-object pairs from a small set, specifically time described in Table 3.6:

57

object input process output
verb
add

append X

alter X

delete

remove

Table 3.7: Change Driver Generic Pairs Example

The verbs are the same as the categories of moifiadscribed in paragraph 3.1. The
object is simply to categorize the modified entity ilsee input, processing, or output. In
this task, it is essential to describe the changleeirsystem’s behavior, not necessarily the
mechanism changed. For instance, a change in therhwicth for a text box may be
accomplished on the subject system by changing a nuwvaduie in a configuration file;

this change would be more appropriately describe as t@ltigut” referring to the
modified display, rather than “alter input” referringthe modified data file. For the first
step, the short SCF description from the RADI wasmsedrsentence by sentence, and
each applicable verb-object pair was identified. Insé@ond step, each verb-object was
revisited in the description and a one-word name wasifiderfor the entity modified
under the verb-object pair. Focusing the selectiongefreeric object name for each
change driver by first categorizing it as input/output/dataes to increase the probability

of identifying consistent names that could be comparesksacsystems.

In the same manner as that accomplished for modudgilieg| change driver
volatility was tabulated for each system with bothuweence counts and release counts.

These tabulations are presented in the following table:

58

Category CCPDS-R Granite | SPADOQ Total Percent
Total
alter output 120 21 200 341 35%
alter input 42 2 136 180 19%
alter process 39 12 120 171 18%
append output 57 1 52 110 11%
append input 21 0 40 61 6%
append process 10 0 24 34 4%
delete output 24 1 1 26 3%
delete input 12 1 4 17 2%
add output 10 0 1 11 1%
delete process 1 1 4 6 1%
add process 4 0 1 5 1%
add input 0 0 1 1 = 0%
remove input 0 0 0 0 0%
remove output 0 0 0 0 0%
remove process 0 0 0 0 0%

Table 3.8: Change Category Tabulation

Correlation among the three systems was establissied Spearman’s coefficient

Ho: rs=0:;

of rank correlation as follows:

H:rs>0

Critical value of t = 2.6500(= .01, df = 13, one-tailed test)

Granite Sentry CCPDS-R SPADOC
Granite Sentry| - - -
CCPDS-R £=.79 - -
t=4.70
SPADOC £=.81 rs=.87 -
t=5.07 t=6.37

Table 3.9: Change Categorization Correlation

among the clustering of change categories.

59

Ho is therefore rejected for all three combinatiossalelishing a significant correlation

Establishing the most prevalent category of changeasesmplished by a ranking
by both frequency within systems as well as occurreno®re than one system. The
following table lists the change objects that occume@vo or more of the systems, along

with their total exposure:

Object Occurrence CCPDS-R Granite SPADO(Total
Exposure
display 3 112 21 144 277
message 3 104 3 84 191
menu 2 20 0 26 46
satellite 2 2 0 14 16
COTS 2 3 0 12 15
command 2 3 0 6 9
site 2 0 1 7 8
alarm 2 2 2 0 4
threat 2 0 1 1 2
count 2 1 0 1 2
keyboard 2 1 0 1 2

Table 3.10: Predominant Change Objects

The sort performed on the above table used “Occurreaxctie first sort key and
“Total Exposure” as the second. In this instanceemosure rankings conform to the
primary sort on the number of systems in which threngke object appears; this does not
always have to be the case. A large number of ogmesan one system can push a
change driver with a lower occurrence into the tenyitaf objects which occur in more
systems. The objective of this particular analgsit® idetermine “predominant change
objects,” where the first condition of predominancthe occurrence of the object in many
systems of the domain. Sorting first by occurrenceesethis first condition; sorting

second by exposure serves to rank the objects within“tbuckets” of occurrence.

60

It should be noted that, for the subject domain, tlseaehigh degree of correlation
between occurrence in many systems and change voldoreelation of occurrence
among the systems and the exposure in each systenstabisbed using Spearman’s

coefficient of rank correlation as follows:

Ho: rs=0:; H:rs>0

Critical value of t = 2.3580(= .01, df= 60, one-tailed test)

Granite Sentry CCPDS-R SPADOC
rs 0.8263851 0.652381 0.6147092
t 11.555496 6.7778233 6.136548

Table 3.11: Change Object Correlation

3.6 Method: Asserting the Benefit of Addressing Volatility

3.6.1 Cost Comparison Data Collection

Granite Sentry offered an opportunity for comparisoohainge costs between a
system where volatility was not formally addresseitsinlesign with the equivalent system
where volatility was analyzed and encapsulated. Patigufor vertical release 95-2, the
organization developing the replacement system incompadIS€CFs that the operational
system also incorporated. To support cost comparisemptigh-order-of-magnitude
(ROM) cost estimates for 12 of 13 identical modificatioresle to both systems were
obtained from the responsible organizations. Additlpniahpacted module tabulations
were also obtained for 5 of the 13 releases. It wasmeted from interviews with

engineers from the development team that most ofysters attributes determined to be

61

volatile were encapsulated in .BCP files and importemitine data base management

system for subsequent use by the executing system.

3.6.2 Cost Comparison Data Reduction

It was first determined that the cost estimate®ft@cting each change to the new
system was on average 53% less than the costs estitnat@ke the equivalent changes
on the old system. To attempt to determine the dartbty benefit of volatility
encapsulation, the cost difference was correlated adhaslifference in number of Ada
modules impacted and the number of .BCP files impactdwingw system. Using this
computed data from the 5 changes with module data, a regressilysis was performed.
At the .05 significance level, it was determined thatgblected independent variables do
not have the capability to predict difference in chacms between the new and old
Granite Sentry systems, making it impossible to atteltany component of cost benefit

directly to the encapsulation method used.

62

Chapter 4

Analysis

4.1 Analysis: Establishing The Nature of Volatility

Development of volatility tabulations for the systeai the subject domain
provided interesting insight into the nature of softwarelution. However, cross-
comparison between systems of module-oriented vojatilitrics is of limited value for

the following reasons:

1. Differences in reported entities alter the levedm@inularity with which
volatility is identified. In the cases of CCPDS-Ridaranite Sentry, the reported
entity was the Ada package or program. For SPADOC giherted entity was
the Computer Program Component (CPC), which encompalseel BORTRAN
routines supporting a system function. SPADOC’s CPC septed a level of
granularity comparable to the Computer Software Compd@SI€) used in
CCPDS-R and Granite Sentry, which contain a large eumbmodules. So, for
every component impacted by a change in SPADOC, a lpageentage of the

total system was counted.

2. The releases comprising the subject period for Gr8eitery did not
include the number of changes that would normally beideresi due to the

impending arrival of the replacement system. Thisdactelates to Granite

63

Sentry’s small volatility metrics compared to CCPD&+RRl SPADOC. Even the
normalized volatility concentration (8%) exhibitsignificant difference from the
SPADOC (31%) and CCPDS-R (22%) numbers to which attribitica

significant difference in change traffic cannot be alisted.

For the above reasons, module volatility metricsiotibe reliably used for
developing domain characterizations. However, the moaildeility topology
represented by the tabulation of module touch counts cadprinformation of
significant utility to maintainers of the system. r kigstance, for the set of corrective
changes made during a series of releases, identificatimodules visited the most points
to specific places in the system with reliability pevbs. Additionally, the volatility focus
metric can be used as an indicator of the proportidheobverall system with reliability
problems. But the focus of this inquiry is to estaltighvalidity of characterizing
volatility; the essential contribution of module uiigy analysis is to validate the
fundamental nature of volatility. Toward this end, medule change frequencies
tabulated for all three systems illustrate the phenomémat change happens over time in
a relatively small proportion of the total source caslagdenced by the frequency counts

of all three systems meeting the conditiom m.;.

4.2 Analysis: | dentifying Cross-System Volatility Correlations

It then becomes imperative to engineer a contrivamgeoduce consistent
manifestations of the behavior of volatility acreystems. Simple categorization of

change according to the five verbs and three objectsibed in Chapter 3 may seem

64

trivial, but these descriptors are universally applicablall software systems. It may

eventually come to pass that enough categorizationamigehin this general manner is

gathered to characterize volatility universally, prawigdimotivation to developers in all

domains to concentrate on, say, making “alter outputy maccomplish in their system

because it is the most prevalent type of change. Mfijard to specific domains, the

second step of using the change category to identify aigedgect shows significant

promise, if only to categorize domain change with resfmemputs and outputs.

Processing appears to be too specific to individual sgsterdrive out common change

objects using this mechanism. The percent contribati@ach of the identified change

objects to the overall volatility exposure of the domis listed in the table below:

Object Occurrence (# CCPDS-R | Granite Sentry SPADOC Average
systems) Per cent
display 3 37.33% 63.64% 38.20% 46.39%
message 3 34.67% 9.09% 22.28% 22.019%
menu 2 6.67% 0.00% 6.90% 4.52%
satellite 2 0.67% 0.00% 3.71% 1.46%
COTS 2 1.00% 0.00% 3.18% 1.39%
command 2 1.00% 0.00% 1.59% 0.86%
site 2 0.00% 3.03% 1.86% 1.63%
alarm 2 0.67% 6.06% 0.00% 2.24%
threat 2 0.00% 3.03% 0.27% 1.10%
count 2 0.33% 0.00% 0.27% 0.20%
keyboard 2 0.33% 0.00% 0.27% 0.20%
file 1 0.00% 0.00% 5.57% 1.86%
dialog 1 0.00% 0.00% 3.71% 1.24%
alert 1 4.00% 0.00% 0.00% 1.33%
rules 1 3.33% 0.00% 0.00% 1.11%
data 1 2.00% 0.00% 0.00% 0.67%
DIM 1 0.00% 12.12% 0.00% 4.04%
report 1 1.33% 0.00% 0.00% 0.44%
time 1 1.33% 0.00% 0.00% 0.44%
element set 1 0.00% 0.00% 1.06% 0.35%

Table 4.1: Change Object Volatility Contribution

65

Object Occurrence (# CCPDS-R | Granite Sentry SPADOC Average
systems) Per cent
notification 1 0.00% 0.00% 1.06% 0.35%
orbit 1 0.00% 0.00% 1.06% 0.35%
security 1 0.00% 0.00% 1.06% 0.35%
status 1 1.00% 0.00% 0.00% 0.33%
timer 1 1.00% 0.00% 0.00% 0.33%
baud rate 1 0.00% 0.00% 0.53% 0.18%
options 1 0.00% 0.00% 0.53% 0.18%
weapon 1 0.00% 3.03% 0.00% 1.01%
error 1 0.33% 0.00% 0.00% 0.11%
failover 1 0.33% 0.00% 0.00% 0.11%
form 1 0.33% 0.00% 0.00% 0.11%
message field 1 0.33% 0.00% 0.00% 0.11%
message filter 1 0.33% 0.00% 0.00% 0.11%
scenario 1 0.33% 0.00% 0.00% 0.11%
summary 1 0.33% 0.00% 0.00% 0.11%
table 1 0.33% 0.00% 0.00% 0.11%
thresholding 1 0.33% 0.00% 0.00% 0.11%
track 1 0.33% 0.00% 0.00% 0.11%
applications 1 0.00% 0.00% 0.27% 0.09%
ASAT 1 0.00% 0.00% 0.27% 0.09%
buffer 1 0.00% 0.00% 0.27% 0.09%
catalog 1 0.00% 0.00% 0.27% 0.09%
CIS 1 0.00% 0.00% 0.27% 0.09%
cluster 1 0.00% 0.00% 0.27% 0.09%
collision avoidance 1 0.00% 0.00% 0.27% 0.09%
consistency 1 0.00% 0.00% 0.27% 0.09%
decay dates 1 0.00% 0.00% 0.27% 0.09%
edit 1 0.00% 0.00% 0.27% 0.09%
Ephemeris 1 0.00% 0.00% 0.27% 0.09%
extrapolation DC 1 0.00% 0.00% 0.27% 0.09%
folder 1 0.00% 0.00% 0.27% 0.09%
interface 1 0.00% 0.00% 0.27% 0.09%
IRONs 1 0.00% 0.00% 0.27% 0.09%
keys 1 0.00% 0.00% 0.27% 0.09%
maneuver 1 0.00% 0.00% 0.27% 0.09%
msg 1 0.00% 0.00% 0.27% 0.09%
multipliers 1 0.00% 0.00% 0.27% 0.09%
observation 1 0.00% 0.00% 0.27% 0.09%
printer 1 0.00% 0.00% 0.27% 0.09%

Table 4.1: Change Object Volatility Contribution (contd)

66

Object Occurrence (# CCPDS-R | Granite Sentry SPADOC Average
systems) Per cent
projection 1 0.00% 0.00% 0.27% 0.09%
screen print 1 0.00% 0.00% 0.27% 0.09%
solar 1 0.00% 0.00% 0.27% 0.09%
vote 1 0.00% 0.00% 0.27% 0.09%
window 1 0.00% 0.00% 0.27% 0.09%

Table 4.1: Change Object Volatility Contribution (contd)

The remaining change objects contributed 1% or lessaablbr occurred in only one

system. With respect to the subject domain, the tast wolatile object types, displays

and messages, occurred in all three systems and accéaméedaverage of 68% of the

total exposure to change. The next most volatilecblnjeat least two of the systems is

the menu, accounting for an average of 5% of the tgpasire to change across two of

the three systems. Given these measured proportimagadifity, an assertion of

significant values ofn for corresponding can be made. For the subject domain,

significant values ofn at p=46%, is 1p=68%, is 2p=73%, is 3. Higher values aido

not contribute significantly to the total domain véils3t The significance of this assertion

is that, for the domain of integrated tactical warratigick assessment correlation

systems, developers of these systems can accommpgatxienately 68% of the

anticipated volatility during maintenance by encapsulasyuects of first displays, then

messages, with change mechanisms. The traditional “80%0” rule of Pareto analysis

was also considered, where the number of change obijattaccount for 80% of the

enhancive maintenance was determined. This vale,= 8, includes five change

objects who contribute only an average of 1.5% eathetdotal enhancive effort.

67

However,mgqy, incorporates 13% of all identified change objects, initigaan even

higher concentration of change than the “80% - 20%” patter

It should be noted that there were change objectstmatibuted to the total
enhancive effort of the domain on the order of menas DIM processing, 4%), but
occurred in only one system (SPADOC). As with the Imemof releases a change object
was touched, the number of systems it appears in hBesdonsidered separately from its
change traffic in order to give proper weight to its plevee among systems over any
high volatility within a single system. So, for afatility analysis, be it of modules
within a single system or change objects among systamositization should occur first
by release or system (module or change object volatispectively), then by impact

count. This sorting “bucketizes” change traffic accaydim its prevalence.

It can be argued that the input/output-oriented changetslgemprising displays
and messages have many more instances within a spgstfem than the specific
processing identified in the analysis. Indeed, eacheoftiree systems of the subject
domain contain components corresponding to tens ifunadrdeds of displays and
messages, where the processing objects identified usaalysted of a single instance.
But the proportions of change categories tabulated fosuthject domain support the
imperative to attend to displays and messages, for @lepsing changes accounted for
only 22% of the total change analyzed in the subject aloweasus 51% attributed to

outputs.

68

4.3 Analysis: Asserting the Benefit of Addressing Volatility

Based on the available data, it was impossible tiaté a specific component of
reduced change cost to the new Granite Sentry’s encapsutzethod. Indeed, many of
the same people who developed the old Granite Sentryinvedged in developing its
replacement and may very well have engaged in other vaprents of code organization

and structure that resulted in more efficient change.

The analysis presented in this chapter establiskeasatiure of enhancive software
volatility and manifests the potential to identify amon change drivers in systems of a
domain. The next chapter discusses the implicatiottisofnalysis with respect to its

constructive impact on the process of software developme

69

Chapter 5

Results and Conclusions

5.1 Summary of Results

This dissertation set out to validate the concept®latility identification and
encapsulation as beneficial influences on systemylifée costs. The foundation for this
validation was the proof of the three hypotheses ptedem Chapter 1. The summary of

the decisions regarding the hypotheses are:

H1: Distribution of frequency of enhancive changeaisystem is not uniform:

Proven - Frequency of change is not uniformly distributed.

H2: Within a domain, the most volatile objects lofilgge are common to all systems:

Proven - Systems of a domain can experience common changedri

H3: Effort expended in software development to peglate a volatile point reduces
the cost to change the encapsulation object in teaance:
Not Proven - Insufficient data to assert a correlation betwesatility

encapsulation and cost savings.

While the cost-benefit of addressing volatility was proven, the behavior of
volatility exhibited within systems and correlated ageystems of a domain shows

significant potential for cost reduction through encapgulatFirst, significant rates of

70

revisit in certain modules of a system, as proven bywudlidates the assertion that the
extra cost of encapsulation can be amortized overpiauitistances of change cost

reduction. So, the following relationship must holddmspecific encapsulation effort:

SM. < SM, x EF

Where:
SMe = Cost to encapsulate in staff-months
SMyc = Cost to inflict a single instance of a change drffrem
Equation 1)
EF = Expected instances of change during life cycle

The selection of change drivers to encapsulate insodtware development can
be assisted by the selection of an appropriate valoefaf a given percentage of

anticipated volatility. Given that the equation deseglihe Pareto curve of volatility

topology is logarithmic,
y=CIn(X+ b,

the second derivative,

d’y__C
dx? X2’

71

is a potential indicator of the point on the curve \eltéie most volatile change drivers are
captured. However, the selection of a particoias dependent not only on the
contribution of each change driver to the overallciraied volatility, but also to the cost
to effectively encapsulate the change driver. Pragroatisideration of the available
resources may preclude engaging in a particularly costpsntation, even if the change
driver’s volatility contribution tg is high. By this insight, it should be apparent that th
selection oim based on a mathematical criterion such as significansitions of the

second derivative would be unnecessarily arbitrary.

The second contribution is that there is a congisten to identify change objects
in systems of a domain such that common objects eastetified in all the systems.
Further, for the subject domain, certain common chabijgets exhibited high volatility in
all systems, proven by H2, to the point that two efabjects (displays and messages)
account for an average of 68% of the enhancive vojatiliall three systems. So, for the
ITW&AA correlation systems domain, encapsulating chablgeaspects of displays has
the potential of addressing as much as 46% of the expeattadaive volatility in a new
system, and doing the same for messages will poterd@digess another 22%. In fact,
the first order characterization (add, append, altertejalemove; input, processing,
output) has potential for categorizing patterns of changesa all software systems. It
should be noted that developers in the ITW&AA domain miaf to tabulate the change
objects with the associated first-order verbs to &rrttefine the prevalent types of change
inflicted upon the change objects. The representafigalatility as an ordered pair also

constituted a significant contribution, recognizing theetordered distribution of change

72

as the primary indicator of volatility worth addressifajlowed by the total activity over

the period under study.

It should be recognized that, no matter how incidreeinformation presented by a
volatility analysis, the effort expended on it willaomt to naught unless there is
motivation within a software development manager fgeer resources specifically
targeted to encapsulating potentially volatile pointsooPof the third hypothesis is
eventually required to provide the compelling evidencewbitility encapsulation is a
viable life cycle alternative. In the near terime effort of the SWSC to specify the
process of domain engineering within the context af trganization offers the
opportunity to inject volatility identification and emgzulation into the roles and
responsibilities of specific individuals. In the SWSOamain Engineering guidebook [2],
the domain focus is captured in the “product line organiadtivhich specifies roles and
responsibilities for the functions required to build anéhtain a domain architecture
supporting a “product line” of specific, related systempec8ically, module-level
volatility analysis provides product line managers aisivie set of metrics with which to
identify and prioritize perfective modifications to theoftware charges to support lower
change costs. Change driver metrics also have valtiuct line managers, supporting
their efforts to characterize volatility acrosssystems of their product line. Change
driver analysis may also provide value to product line doanaalysis as an alternate

source of identification for objects of the serviagelr.

73

5.2 Conclusions and Further Study

The main contribution of this dissertation was ttaklsh a methodological model
for directly addressing software volatility in new gyss development. The proposed
model also provides a framework for further validatiomhef effort to address software
volatility. Based on the demonstrated tendency ofg@bao cluster with respect to
frequency in a relatively small part of a softwareays the fundamental behavior of
volatility was established, providing the fundamentalivadibn to address it in
development. It was also shown that categorizatibnkange form a promising means
of identifying common change drivers in software systefra domain, providing the
essential information for addressing volatility in néevelopment. Yet to be shown is the
fundamental economic cost benefit of addressing vtjatiased on the complex nature of
real-world software development and all its influenties,best approach for

demonstrating cost-benefit is probably through a cdatt@xperiment.

With respect to characterization, other domains shbelsubjected to the same
analysis to discover consistent patterns of volatillso, the results of change driver
analysis should be analyzed across domains to atteropveiy of change patterns

common to all software systems.

The methodology of change driver characterization gesdurther refinement,
especially with regard to its potential contributiordtmmain analysis. In particular, the
use of a controlled language for writing change descriptiangdd provide significant data

to volatility research, allowing effective comparissfiichange activity across systems of a

74

domain. It could also provide useful data to other endsagach as change impact

analysis and reengineering initiatives.

Finally, this dissertation focused on only one oftthe fundamental activities of
addressing volatility: identification. The activity efcapsulation warrants further
definitional effort and development of a coherent taxoy based on implementation costs
incurred and change costs saved. Particularly, an enatpsuireak-even equation
would provide software developers with a tool to evalma¢iocapsulation efforts with
respect to anticipated volatility and the softwareigested useful life. With these
contributions, the tools to address software vokatiiiring new system development will

provide a coherent and effective approach to reducing axdtiife cycle costs.

75

Appendix 1

Volatility Characterization - SPADOC

76

a. SPADOC Module Volatility Tabulation

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count | Release Percent
ODFD 10 18 10 38 DB 3 100%
ORFI 6 19 10 35 DB 3 100%
ODFC 6 20 6 32 DB 3 100%
ODFO 7 18 7 32 DB 3 100%
OMOP 8 15 4 27 DB 3 100%
ORUD 5 15 7 27 DB 3 100%
OSPC 3 14 8 25 DB 3 100%
ORQI 5 17 2 24 DB 3 100%
OHER 6 6 5 17 DB 3 100%
AMFD 2 7 6 15 DB 3 100%
OPRF 4 8 2 14 DB 3 100%
AMDF 3 5 4 12 DB 3 100%
CT08 4 5 3 12 DB 3 100%
MNTPMP 2 3 6 11 APP 3 100%
AMMP 1 5 4 10 DB 3 100%
AMST 2 4 4 10 DB 3 100%
MNTPMM 1 3 6 10 APP 3 100%
MNTMLB 3 4 2 9 APP 3 100%
OATI 4 4 1 9 DB 3 100%
EMO05 2 3 3 8 DB 3 100%
ORWV 2 2 4 8 DB 3 100%
ADSP 2 2 3 7 DB 3 100%
AMHVPP 2 3 2 7 APP 3 100%
BLDRUA 3 3 1 7 APP 3 100%
SPTCTN 3 3 1 7 APP 3 100%
LCHEVN 1 4 1 6 APP 3 100%
ACDA 1 3 1 5 DB 3 100%
CTLGSV 1 3 1 5 APP 3 100%
DIADSV 2 2 1 5 APP 3 100%
LCHNOM 1 3 1 5 APP 3 100%
MNTPFU 1 3 1 5 APP 3 100%
OSIouT 3 1 1 5 APP 3 100%
DIADGN 2 1 1 4 APP 3 100%
DIAGIN 2 1 1 4 APP 3 100%
EMO1 1 2 1 4 DB 3 100%
LCHLCM 1 2 1 4 APP 3 100%
MNTVAR 1 2 1 4 APP 3 100%
SPTLBR 1 2 1 4 APP 3 100%
BLDCNF 1 1 1 3 APP 3 100%
SPTRRD 1 1 1 3 APP 3 100%
STTGBO 1 1 1 3 APP 3 100%
STTGMO 1 1 1 3 APP 3 100%
STTGRO 1 1 1 3 APP 3 100%

77

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count | Release Percent
STTOBC 1 1 1 3 APP 3 100%
STTSTL 1 1 1 3 APP 3 100%
OCOM 3 7 0 10 DB 2 67%
ACMT 0 3 6 9 DB 2 67%
MNTMDI 0 4 4 8 APP 2 67%
BLDBLB 0 4 3 7 APP 2 67%
AMHLIB 3 3 0 6 APP 2 67%
LCHLLB 3 3 0 6 APP 2 67%
MNTMDC 0 2 4 6 APP 2 67%
AMHGVO 0 4 1 5 APP 2 67%
BLDRUC 1 4 0 5 APP 2 67%
CT03 2 3 0 5 DB 2 67%
CT16 0 3 2 5 DB 2 67%
MNTGB3 3 0 2 5 APP 2 67%
SPED 0 3 2 5 DB 2 67%
AMHOMP 0 3 1 4 APP 2 67%
CRIALP 0 3 1 4 APP 2 67%
CSICSP 0 1 3 4 APP 2 67%
CTLSSV 1 3 0 4 APP 2 67%
CTLSUH 0 3 1 4 APP 2 67%
SPTFEL 0 3 1 4 APP 2 67%
AMHAMP 1 2 0 3 APP 2 67%
AMHFCV 0 2 1 3 APP 2 67%
BLDMPC 1 2 0 3 APP 2 67%
CTLDST 0 2 1 3 APP 2 67%
CTLSHT 1 2 0 3 APP 2 67%
FELD 0 1 2 3 DB 2 67%
MNTAOB 0 2 1 3 APP 2 67%
OSIPBL 0 2 1 3 APP 2 67%
OSIUTL 0 2 1 3 APP 2 67%
SPTRNS 2 0 1 3 APP 2 67%
SSEC 0 2 1 3 DB 2 67%
TSKRTK 1 2 0 3 APP 2 67%
ASTRPC 0 1 1 2 APP 2 67%
BLDBSM 1 1 0 2 APP 2 67%
BLDBUC 1 1 0 2 APP 2 67%
CRSCSP 0 1 1 2 APP 2 67%
CTLSTH 1 1 0 2 APP 2 67%
DIAGOU 1 0 1 2 APP 2 67%
DIAGPH 1 1 0 2 APP 2 67%
MNTAOD 1 0 1 2 APP 2 67%
MNTMOB 0 1 1 2 APP 2 67%
MNTTTC 0 1 1 2 APP 2 67%
PRDRPT 1 1 0 2 APP 2 67%
RTAVFI 1 1 0 2 APP 2 67%
STTCRS 1 0 APP 67%
STTCRX 1 1 0 2 APP 2 67%

78

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count | Release Percent
AMHEXP 0 4 0 4 APP 1 33%
CRIHIO 0 4 0 4 APP 1 33%
CTLOPI 0 4 0 4 APP 1 33%
MNTPSP 0 4 0 4 APP 1 33%
SPTEEL 0 4 0 4 APP 1 33%
CRISVR 0 3 0 3 APP 1 33%
CRSALP 0 3 0 3 APP 1 33%
CRSCIF 0 3 0 3 APP 1 33%
CTLSRH 0 3 0 3 APP 1 33%
EMSEMC 0 3 0 3 APP 1 33%
LCHLDM 0 3 0 3 APP 1 33%
LETD 0 3 0 3 DB 1 33%
OSISEQ 0 3 0 3 APP 1 33%
PMERER 0 3 0 3 APP 1 33%
SMARTS 0 3 0 3 APP 1 33%
SMAWMG 0 3 0 3 APP 1 33%
CRICSP 0 2 0 2 APP 1 33%
CRISLP 0 2 0 2 APP 1 33%
CTLREH 0 2 0 2 APP 1 33%
CTLROT 0 2 0 2 APP 1 33%
EMSSXR 0 2 0 2 APP 1 33%
LCHISD 0 2 0 2 APP 1 33%
LCHSEG 0 2 0 2 APP 1 33%
LFOL 0 2 0 2 DB 1 33%
MGFL 0 2 0 2 DB 1 33%
MNTACC 0 2 0 2 APP 1 33%
MNTACI 0 2 0 2 APP 1 33%
MNTMGM 0 2 0 2 APP 1 33%
OSIGOC 0 2 0 2 APP 1 33%
OSISAM 0 2 0 2 APP 1 33%
RTXRTX 0 2 0 2 APP 1 33%
SAEI 0 2 0 2 DB 1 33%
SATI 0 2 0 2 DB 1 33%
SCsSD 0 2 0 2 DB 1 33%
SMA 0 0 2 2 APP 1 33%
SMAALA 0 2 0 2 APP 1 33%
SMAMSD 0 2 0 2 APP 1 33%
SP08 0 0 2 2 DB 1 33%
SPTP 0 2 0 2 DB 1 33%
STXT 0 2 0 2 DB 1 33%
TSKTUT 0 2 0 2 APP 1 33%
AARF 0 1 0 1 DB 1 33%
ALA 0 0 1 1 APP 1 33%
AMFC 0 1 0 1 DB 1 33%
AMHMST 0 1 0 1 APP 1 33%
AMHRCV 0 1 0 1 APP 1 33%
AMHSOM 0 1 0 1 APP 1 33%

79

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count | Release Percent
AMHTAP APP 1 33%
AMHVDI 0 1 0 1 APP 1 33%
ASTALB 1 0 0 1 APP 1 33%
ASTCPS 1 0 0 1 APP 1 33%
ASTDCI 0 1 0 1 APP 1 33%
ASTDCX 0 1 0 1 APP 1 33%
ASTEQM 0 0 1 1 APP 1 33%
ASTESO 0 0 1 1 APP 1 33%
ASTGRT 1 0 0 1 APP 1 33%
ASTIOM 0 1 0 1 APP 1 33%
ASTLAG 0 0 1 1 APP 1 33%
ASTMAD 0 0 1 1 APP 1 33%
ASTMDT 1 0 0 1 APP 1 33%
ASTOBS 0 0 1 1 APP 1 33%
ASTSEN 0 0 1 1 APP 1 33%
ASTUPM 0 1 0 1 APP 1 33%
BBLB26 0 0 1 1 APP 1 33%
BC3MNT 0 0 1 1 APP 1 33%
BCTL 0 1 0 1 DB 1 33%
BEISAV 0 0 1 1 APP 1 33%
BLBDCX 0 0 1 1 APP 1 33%
BLDBCC 1 0 0 1 APP 1 33%
BLDBEI 0 0 1 1 APP 1 33%
BLDREP 0 0 1 1 APP 1 33%
BSTR 0 1 0 1 DB 1 33%
CRSSIF 0 1 0 1 APP 1 33%
CRSSLP 0 1 0 1 APP 1 33%
CRSSVR 0 1 0 1 APP 1 33%
CSIMGA 0 1 0 1 APP 1 33%
CT17 0 1 0 1 DB 1 33%
CT18 0 1 0 1 DB 1 33%
CTLACS 0 1 0 1 APP 1 33%
CTLAPA 0 1 0 1 APP 1 33%
CTLASH 0 1 0 1 APP 1 33%
CTLDOH 0 1 0 1 APP 1 33%
CTLEHR 0 1 0 1 APP 1 33%
CTLEVT 0 1 0 1 APP 1 33%
CTLLOF 0 1 0 1 APP 1 33%
CTLRTG 0 1 0 1 APP 1 33%
CTLSQH 0 1 0 1 APP 1 33%
CTLTSH 0 1 0 1 APP 1 33%
DBAONI 0 0 1 1 APP 1 33%
DBAPRS 1 0 0 1 APP 1 33%
DBMAVT 0 1 1 APP 1 33%
DBMNTL 0 APP 33%
DIAPSS 0 1 APP 1 33%
DISCSC 1 1 APP 33%

80

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count | Release Percent
EATINP 0 1 APP 1 33%
EMO05 0 1 1 DB 1 33%
EMSSRS 0 1 0 1 APP 1 33%
GBNV 0 0 1 1 DB 1 33%
LPRM 0 1 0 1 DB 1 33%
MARM 0 1 0 1 DB 1 33%
MNO5 0 0 1 1 DB 1 33%
MNTBOB 0 0 1 1 APP 1 33%
MNTCOW 0 0 1 1 APP 1 33%
MNTEOD 0 0 1 1 APP 1 33%
MNTEPH 1 0 0 1 APP 1 33%
MNTMNB 0 0 1 1 APP 1 33%
MNTOBT 0 0 1 1 APP 1 33%
MNTPDC 0 1 0 1 APP 1 33%
MNTPOL 0 0 1 1 APP 1 33%
MNTTAC 0 1 0 1 APP 1 33%
NSEC 0 0 1 1 DB 1 33%
OCoVv 0 1 0 1 DB 1 33%
oDSsC 0 0 1 1 DB 1 33%
OPADAL 1 0 0 1 APP 1 33%
OPADOF 1 0 0 1 APP 1 33%
OPAITO 0 0 1 1 APP 1 33%
OPAJNC 1 0 0 1 APP 1 33%
OPAJWE 1 0 0 1 APP 1 33%
OPAOIT 0 0 1 1 APP 1 33%
OPARCV 1 0 0 1 APP 1 33%
OPARIT 1 0 0 1 APP 1 33%
OPASEL 1 0 0 1 APP 1 33%
OPASFC 1 0 0 1 APP 1 33%
OPASMF 1 0 0 1 APP 1 33%
OPATSC 1 0 0 1 APP 1 33%
OPAXMT 1 0 0 1 APP 1 33%
OPSDAR 1 0 0 1 APP 1 33%
OPSJSA 1 0 0 1 APP 1 33%
OPSRMC 1 0 0 1 APP 1 33%
OPSSEA 1 0 0 1 APP 1 33%
OPSSMR 1 0 0 1 APP 1 33%
ORPI 1 0 0 1 DB 1 33%
OSIDIP 0 1 0 1 APP 1 33%
OSIDOC 0 1 0 1 APP 1 33%
OSIINC 0 1 0 1 APP 1 33%
OSIINR 0 1 0 1 APP 1 33%
OSIOAP 0 1 0 1 APP 1 33%
OSIosC 0 1 0 1 APP 1 33%
OSIOSD 0 1 0 1 APP 1 33%
osIsC 0 1 0 1 APP 1 33%
OSISRV 0 1 0 1 APP 1 33%

81

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count | Release Percent
PMEDCN 0 1 0 1 APP 1 33%
PMESST 0 1 0 1 APP 1 33%
PRDDAV 1 0 0 1 APP 1 33%
PRDEFM 1 0 0 1 APP 1 33%
PRDESI 1 0 0 1 APP 1 33%
PRDNCP 0 1 0 1 APP 1 33%
PRDNCU 0 1 0 1 APP 1 33%
PRDVPR 0 1 0 1 APP 1 33%
RDDS 1 0 0 1 DB 1 33%
RTAIPR 0 1 0 1 APP 1 33%
RTARTA 0 0 1 1 APP 1 33%
RTX 1 0 0 1 APP 1 33%
SATL 0 0 1 1 DB 1 33%
SAVREM 0 0 1 1 APP 1 33%
SCPA 0 0 1 1 DB 1 33%
SCPL 0 0 1 1 DB 1 33%
SCR 0 0 1 1 APP 1 33%
SDIR 0 0 1 1 DB 1 33%
SDTDPG 0 1 0 1 APP 1 33%
SFMWKD 0 1 0 1 APP 1 33%
SMAAEA 0 1 0 1 APP 1 33%
SMADEA 0 1 0 1 APP 1 33%
SMAGSA 0 1 0 1 APP 1 33%
SMAMCD 0 1 0 1 APP 1 33%
SMAMSA 0 1 0 1 APP 1 33%
SMASAV 0 1 0 1 APP 1 33%
SMASAW 0 1 0 1 APP 1 33%
SMASPS 0 1 0 1 APP 1 33%
SPO7 0 0 1 1 DB 1 33%
SP09 0 0 1 1 DB 1 33%
SP10 0 0 1 1 DB 1 33%
SP11 0 0 1 1 DB 1 33%
SP12 0 0 1 1 DB 1 33%
SPTASF 0 1 0 1 APP 1 33%
SPTEQP 0 0 1 1 APP 1 33%
SPTIOD 0 1 0 1 APP 1 33%
SPTIOT 0 0 1 1 APP 1 33%
SPTRAF 1 0 0 1 APP 1 33%
SPTRDW 1 0 0 1 APP 1 33%
SPTRRI 1 0 0 1 APP 1 33%
SPTRSW 1 0 0 1 APP 1 33%
SPTSVP 0 1 0 1 APP 1 33%
SRFC 0 0 1 1 DB 1 33%
SRNK 0 0 1 1 DB 1 33%
SSTD 1 0 0 1 DB 1 33%
STRF 0 0 1 1 DB 1 33%
STTGTO 0 1 0 1 APP 1 33%

82

Module 96-1 96-2 97-1 Grand Total | Module Type| Release Count Release Per cent

STTMGR 1 0 0 1 APP 1 33%

STTMGS 1 0 0 1 APP 1 33%

STTSTT 0 1 0 1 APP 1 33%

TPRM 0 0 1 1 DB 1 33%

TSKSAN 0 1 0 1 APP 1 33%

TSKTFM 0 1 0 1 APP 1 33%

TSKTIN 0 1 0 1 APP 1 33%

TSKTMG 0 1 0 1 APP 1 33%

TSSN 0 0 1 1 DB 1 33%

WMGREM 0 0 1 1 APP 1 33%
b. SPADOC Change Driver Tabulation
Change Object 94-1 | 96-1 [96-2 | 97-1 | Grand Total | Release Count | Release Pct Exposure Exposure

Per cent

display 5 6 22 3 36 4 100% 144 38%
message 11 0 11 6 28 3 75% 84 22%
file 2 2 3 0 7 3 75% 21 6%
menu 1 0 12 0 13 2 50% 26 7%
dialog 3 4 0 0 7 2 50% 14 4%
satellite 0 6 0 1 7 2 50% 14 4%
COTS 0 3 0 3 6 2 50% 12 3%
command 2 0 1 0 3 2 50% 6 2%
element set 0 1 1 0 2 2 50% 4 1%
notification 0 1 0 1 2 2 50% 4 1%
orbit 0 0 1 1 2 2 50% 4 1%
security 0 1 0 1 2 2 50% 4 1%
site 0 7 0 0 7 1 25% 7 2%
baud rate 0 0 2 0 2 1 25% 2 1%
options 0 2 0 0 2 1 25% 2 1%
applications 0 0 1 0 1 1 25% 1 0%
ASAT 0 0 1 0 1 1 25% 1 0%
buffer 0 0 1 0 1 1 25% 1 0%
catalog 1 0 0 0 1 1 25% 1 0%
CIS 0 0 1 0 1 1 25% 1 0%
cluster 0 1 0 0 1 1 25% 1 0%
collision avoidance 1 0 0 0 1 1 25% 1 0%
consistency 0 0 1 0 1 1 25% 1 0%
count 0 1 0 0 1 1 25% 1 0%
decay dates 1 0 0 0 1 1 25% 1 0%
edit 0 1 0 0 1 1 25% 1 0%
ephemeris 0 1 0 0 1 1 25% 1 0%
extrapolation DC 0 0 1 0 1 1 25% 1 0%
folder 0 1 0 0 1 1 25% 1 0%
interface 0 0 1 0 1 1 25% 1 0%
IRONs 0 0 1 0 1 1 25% 1 0%
keyboard 0 0 0 1 1 1 25% 1 0%

83

Change Object 94-1 | 96-1 [96-2 | 97-1 | Grand Total | Release Count | Release Pct Exposure Exposure

Per cent
keys 0 0 1 0 1 1 25% 1 0%
manuever 0 0 1 0 1 1 25% 1 0%
msg 0 1 0 0 1 1 25% 1 0%
multipliers 0 0 1 0 1 1 25% 1 0%
observation 0 0 0 1 1 1 25% 1 0%
printer 0 0 0 1 1 1 25% 1 0%
projection 0 1 0 0 1 1 25% 1 0%
screen print 1 0 0 0 1 1 25% 1 0%
solar 1 0 0 0 1 1 25% 1 0%
threat 0 0 1 0 1 1 25% 1 0%
vote 0 1 0 0 1 1 25% 1 0%
window 0 1 0 0 1 1 25% 1 0%
Grand Total 29 42 65 19 155

84

Appendix 2

Volatility Characterization - CCPDS-R

85

a. CCPDSR Module Volatility Tabulation

Module 94-2 |1 95-1 | 95-2 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
DGN_MENU_FORMS 0 4 2 1 2 1 0 10| .ADB 5 719
ENUMERATED_TYPES 0 0 1 1 7 2 0 11 .DAT 4 57%
USER_CONTROL 0 1 3 4 1 0 0 9| .ADB 4 579
CMP_PRECALCULATED_AOI_DATA 3 0 1 0 2 2 0 8| .DAT| 41 7%
CMP_PRECALCULATED_THREAT_FAN 3 1 2 1 .DAT 4] 57%
BUILD_DISPLAY_DATABASE 0 0 1 2 1 2 0 6] .CO 579
CMP_LOFT_ANGLE_DATA 1 1 2 6| .DAT 57%
SSP_MISSION_DATA_COUNTS 0 0 1 2 1 4 g .ADB 4 576
CMP_GRAZE_BUFFER_PARAMETERS 1 q 4 D .ADB 4 57%
CMP_RELATIVE_MULTIPLE_MIDPOINT_TIC 1 0 1 0 2 1 0 5(.DAT 4 57%
CMP_STRATEGIC_ADAPTATION 0 1 1 1 .DAT| 4 57%
DGN_GEOGRAPHIC 0 1 2 0 1 1 0 5| .ADB 4 579
SSP_SEWS_ML_PROCESSING 1 5 .ADB 4 5¢ %
CSD_SYSTEM_CONTROL_PROCEDURES q 1 .ADB 4 57%
DGN_SCREEN_MANAGER 0 4 5 1 0 0 0 10 .ADB 3 430
SGI_BASIC_TYPES_ 1 10| .ADS 439
SGI_TABLE_IX_ .ADS 439
SGI_DISPLAY_TEXT_ 0 0 0 2 4 1 0 7| .ADS 3 439
SCN_SYSC_CONNECTIVITY_SITES 0 0 1 0 3 Y. q .DA[r 3 43%
CMP_DCO_AOI_DB 1 0 1 0 3 0 0 5| .DAT 3 439
CMP_NMP_AOI_DB 1 0 1 0 3 0 0 5| .DAT 3 439
CMP_RMP_AOI_DB 1 0 1 0 3 0 0 5| .DAT 3 439
CMP_SSP_AOI_DB 1 0 1 0 3 0 0 5| .DAT 3 439
CMT_TOOL_TYPES_ 0 0 0 2 2 1 0 5| .ADS 3 439
CSD_INIT 0 0 0 2 2 1 0 5| .COM 3 439
FOM_FOE_OUTPUT_NON_DISCRETE_MESSAGES o 1 3 1 05 |(.ADB 43%
SCN_OMP_MESSAGE_CATEGORY_FILE 0 0 g 1 K D b .DAT 43%
SGI_CSSR_FORMAT_IDS_ 0 0 0 2 2] g .ADB 3 43%
SGI_DISPLAY_TYPES_ 0 0 0 2 2 1 0 5(.ADY 3 43[%)
SGI_RECORD_ASSIGNMENT 0 0 0 2 1 a . 5§ .ADB 3 43ps
SSP_BASIC_TYPES_ 0 0 0 1 2 0 2 5| .ADS 3 439
SSP_SEWS_DATABASE_ 0 0 0 1 2 d 2 9 .ADB 3 43%
CCO_MESSAGE_INDEX_NUMBERS 2 1 q 4 DA 3 %3
CCO_MESSAGE_PRIORITIES 0 0 0 .] 4 .DATT 3 43%
CMP_AOI_DATA 1 0 1 0 2 0 0 4 | .DAT 3 439
CMP_CMP_COMPLEX_DB 1 0 1 0 2 0 0 4] .DAT 3 43%
CMP_DCO_COMPLEX_DB 1 0 1 0 2 0 0 4] .DAT 3 43%
CMP_MISSILE_TYPING 1 0 1 0 2 0 0 4| .DAT| 3 43%
CMP_WORLD_LAUNCH_COMPLEXES 1 0 1 0 2 0 q 4 DAT 3 3%
CMT_VIM_BODY_TOOL 0 0 0 1 1 0 2 4 .ADB 3 439
CSD_RECONFIGURATION_PROCEDURES g d p 0 H .AQB 3 43%
DGN_FDB_FORMAT_BUILD_UTILITIES 0 0 1 2 1 0 0 4| .ADB 43%
FOM_FORMAT_PDS_M1A 0 1 1 2 0 .ADH 3 43%0

86

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
Total [Type Count | Percent
MESSAGE_INPUT_FILE 0 0 0 2 0 4 .DAT 3 43%0
PIM_VIM_MISSION_MESSAGE_DATA 0 1 0 2 4| .ADH 3| 43%
SDG_MESSAGE_FORMATTER 1 0 0 1 2 q q 4 ADB 3 43P
SGI_CSSR_MESSAGE_IDS_ 0 a a] D A0S B 48%
CCO_SUMMARY_MESSAGE_FORMAT_IDS 0 0 0 1 1 1 q 3 DAT 3 43%
CMP_SENSOR_LOCATIONS 1 0 0 0 1 1 q 3 DAT 3 434
CSD_ERM_ALARM_PROCEDURES 0 0 1 1 il d 3 .ADB 3 43%
CSD_OPERATIONS 0 0 0 1 1 1 0 3| .ADB 3 439
FOM_CSSR_MESSAGE_HEADER_UTILITIES 0 g 1 D BADB 3 43%
FOM_FOE_PERIODIC_TYPES_ q 1 1 ADIS B 43%
FOM_FOE_PROCESS_PERIODIC_MESSAGES 0 0 1 1 0 BDB. 3 43%
SCN_SERVICES_PROCESSING a @ (6] 3 .ADB B 4B%
SGI_ERROR_CODES 0 0 1 1 1 0 0 3| .ADB 3 439
USER_CURRENT_SITE_STATUS_POPUP 1 1 0 3 .RAW3 43%
USER_SYSTEM_CONTROL_INTERFACE 0 0 1 1 q ADB 3 43%
FOM_FORMAT_ATAMS_STATUS 0 0 0 0 5 3 0 8| .ADH 2 29%
DGN_ALARM_PROCESSOR 0 4 3 0 0 a a 71 .ADB 2 296
VMSP_PERF_INTERFACE 0 0 0 0 3 3 a q .COM 2 29%
USER_ALARM_PROCESSING 0 0 4 0 q 1 q 5 .ADB 2 2%%
USER_WORKSTATION_STATUS 0 0 0 2 0 3 g 5 .ADB 2 2900
FOM_FOE_ACTIONS 0 0 0 1 3 0 0 4 | .ADB 2 299
SCN_PROCESS_KEEPALIVE_MESSAGE a [l 0 4 ADB 2 29%
SCN_VIM_PROCESSING 0 0 1 3 0 a a 4 .ADB 2 296
CMT_LTD_LOAD_DCO_DISPLAY 0 0 0 2 1 0 0 3| .ADB 2 29%
CSD_INITIALIZATION 0 0 0 1 2 0 0 3 | .ADB 2 29%
DGN_CONFIGURATION 0 0 0 2 0 1 0 3| .ADH 29%
DGN_MENU_TYPES_ 2 .ADS 2 299
FDB_UTILITIES 1 0 .ADB 299
FOM_FORMAT_FORWARD_USERS_AN26 0 0 1 q 4 ADB 2 29%
FOM_FORMAT_PDS_M2 0 0 0 2 1 0 0 3| .ADH 2 29¢%0
NMP_BASIC_TYPES_ 0 0 0 0 1 0 2 3| .ADS 2 299
NMP_NUDET_DATABASE_ 0 0 0 2 .ADS 2 29%
NMP_SATELLITE_NUDET_PROCESSING 0 0 0 a] [l 3 .ADB 2 29%
PIM_VIM_KEEPALIVE_PROCESSING 0 0 1 0 2 0 q 3 .ADB 2| 29%
PIM_VIM_SEWS_ML_EVENT_MESSAGE 0 0 1 0 0 0 2 3 .ADB 29%
PIM_VIM_SEWS_MLU_EVENT_MESSAGE 0 0 1 0 0 0 2 3 .ADB 29%
RMP_RADAR_DATABASE 0 0 2 0 1 0 0 3| .ADB 2 29%
RMP_RMP_RADAR_TASK_COMP 0 0 0 2 1 0 3 .ADB 290
SDG_LOAD_DATABASE_FILES 0 2 0 .ADH 2 29%
SGI_FUSED_DATABASE_ 0 0 2 3| .ADY 2 2900
SSP_INITIALIZE_IDB_DATA 0 0 0 1 0 0 2 3| .ADB 2 299
SSP_REPAIR_THREAD 0 1 a . 3j .ADB 296
SSP_SEWS_DATABASE 1 q 4 3 .ADB 2%%
SSP_SEWS_R_PROCESSING D o 0 0 2 3 .ADB 2 49%
STARTUP_SHADOW_TWAAL .RCH 290
STARTUP_SHADOW_TWAA2 .RCH 290
USER_ALARM_ASSIGNMENT_SUMMARY_MWC 3| RAW 2 29%

87

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
ARCH_MONITOR_LOG_PROCEDURES 0 0 q 1 1 D 2 .ADB 2 29%
ARCH_MONITOR_LOG_PROCEDURES_ 0 0 g 1 D P .ADS P 29%
CCPDSR_SOFTWARE_VERSION 1 1 g d D b .DAT 2 2
CCS_GEOGRAPHIC_SEARCH 1 0 q q 1 D 2 .ADB 4 29
CMP_LORIG_CHAR_DB 1 0 0 0 1 0 0 2| .DAT| 2 294
CMP_LORIG_LATITUDE_DB 1 0 0 0 1 0 0 2| .DAT 2 299
CMP_LORIG_LONGITUDE_DB 1 0 0 0 1 0 0 2| .DAT| 2 294
CMP_MISSILE_INVENTORY 0 0 1 1 0 0 0 2| .DAT| 2 299
CONI_CONFIGURATION_PROCESSING 0 0 q 1 q D 1 ADB 2 29%
CREATE_VXT_TERMINAL_ACCOUNT 0 0 0 0 1 1 0 2| .COM 2| 29%
CSD_CONFIGURE_SYSTEM 0 0 0 1 1 q q 4 .ADB 2 29
CSD_CREATE_SUBSYSTEM_SENSOR_STATUS_MENU D 9 1 0 1 00 2 |.ADB 2 29%
CSD_INTERNAL_STRUCTURES_ 0 0 0 1 1 q q 4 .ADp . 29
CSD_MONITOR_LOG_PROCEDURES 0 a a] L D p .AQB 992
CSD_SYSTEM_CONTROL_PROCEDURES _ D L 1 0 0 2 .ADS 2 29%
DGN_FIELD_CONTROL_IO 0 0 0 0 1 1 0 2| .ADH 2 294
DGN_FORMAT_BUILD_TYPES_ 0 1 0 .ADY 2 29
DGN_GEOGRAPHIC_ 0 1 0 0 1 0 0 2| .ADS 2 299
DGN_IR_COVERAGES 0 0 0 0 1 0 2| .DA1 2 29
DGN_MAP_GENERATOR 0 1 0 0 0 2| .ADH 2 29
DGN_MENU_UTILITIES 0 0 1 0 1 0 .ADB 2 299
DISP_TASK_INIT 0 0 1 1 0 0 2| .COM 2 299
FIL_CSSR_FORMAT_IDS_ 0 0 0 1 1 0 g 2 .AD$ 2 29
FIL_PDS_FORMAT_IDS_ 0 0 0 1 1 0 0 2 .ADY 2 29
FIL_SAC_FORMAT_IDS_ 0 0 0 1 1 0 0 2 ADY 2 29
FIL_UPDATE_SCENARIO_TIMES 0 0 0 1 1 0 0 2| .ADH 2 29
FOM_FOE_BASIC_TYPES_ 0 0 0 1 q 1 q 4 .ADp . 29
FOM_FORMAT_ATAMS_STATUS_ 0 0 0 0 1 1 0 2| .ADS 2 29
FOM_FORMAT_FORWARD_USERS_AU09 0 0 1 q 1 D 1 ADB 2 29%
FOM_FORMAT_PDS_M17 0 0 0 1 0 1 q 2| .ADB 2 29
FOM_FORMAT_PDS_M1B 0 0 0 1 0 1 0 2| .ADH 2 29
FOM_FORMAT_PDS_M3 0 0 0 1 1 0 0 2| .ADH 2 29
FOM_FORMAT_PDS_M5B 0 0 1 1 0 0 0 2| .ADH 2 29
FOM_FORMAT_PDS_N2 0 0 0 1 1 0 q 2 .ADEF 2 29
FOM_FORMAT_PDS_T1 0 0 1 1 0 0 q 2l .ADB 2 29
GAC_PROCESS_TEMPLATE 0 0 0 1 g 1 7 .ADB 2 29
GAC_TYPES_ 0 0 0 0 1 1 0 2| .ADS 2 299
INJP_MESSAGE_INJECTION 0 0 1 0 q 1 q 4 .ADB 2 29
M2_MISSILE_LAUNCH_SUMMARY_CMO07 0 0 0 1 1 0 0 2| .outl 2 29%
MCIO_PUT_BASIC_UTILITIES 0 0 0 0 1 1 0 2| .ADH 2 299
PIM_VIM_ACTION_A 0 0 1 1 0 0 0 2| .ADB 2 299
PIM_VIM_START_UP 0 0 1 0 0 2 | .DAT 2 299
QPR_ANALYSIS_SQL_SUPPORT 0 0 q 1] D ‘_bSQLMO 2 29%
QPR_SENSOR_SQL_SUPPORT D D 1 1 0 0 %QLMO 2 29%
QPR_SQL_SUPPORT 0 0 0 1 1 0 0 2 bSQLMO 2 29%
RESUME_REAL_EXTERNAL_INPUTS 0 0 0 1 0 1 q 2 .ING 2[29%

88

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
RMP_TIME_TO_IMPACT 0 0 0 0 1 1 0 2| .ADH 2 29%
SAS_TASKS 0 0 0 1 0 1 0 2 | .DAT 2 299
SCN_APPLICATION_PROCESSING 0 0 1 q q D 2 .ADB 2 9w
SCN_SYSC_DATA_ 0 0 0 0 1 1 0 2| .ADS 2 299
SCN_SYSC_NETWRK_CONTROL_TASK_COMP L L o PADB 2 29%
SGI_MCIO_STATUS_MESSAGE_ 0 0 0 0 il] 4 .ADB 4 29%
SHUTDOWN_NETWORK 0 0 0 1 0 1 0 2| .RCH 2 29%
SPM_TASK_INIT 0 0 0 1 1 0 0 2| .COM 2 299
SSP_READ_MISSILE_TYPING 1 0 0 1 0 a a 3 .ADB 2 296
SSP_TASK_INIT 0 0 0 1 1 0 0 2| .COM 2 299
SUSPEND_REAL_EXTERNAL_INPUTS 0 0 0 1 q 1 q 4 .ING 4 29%
TAS_INPUT_FILE 0 0 0 1 1 0 0 2 | .DAT 2 299
USER_CMAFB_SYSTEM_STATUS_RELATED a] [l 2 AR 2 29%
USER_DISP_DISPLAYS_TASK_COMP 0 1 q | D 2 .ADB 2 29%
USER_INTEGRATED_ATTACK_SUMMARY_RELATED 1 1 .RAW 2 29%
USER_LAUNCH_ORIGIN_SUMMARY 1 1 2| .RAV 2 9%
USER_MISSILE_ATTACK_SUMMARY_RELATED 1 1 2|.RAW 29%
USER_NORAD_NUDET_ASSESSMENT_RELATED q q q | L D PRAW 29%
USER_NORAD_REFINED_RADAR_COMPOSIT_F92 a (L L o .RAW 2 29%
USER_NUDET_ASSESSMENT_RELATED 0 0 g 1 P .RAW 2 29%
USER_NUDET_SITUATION_RELATED 0 0 0 1 1 0 0 2[.RAW 2| 29%
USER_OPCC_SYSTEM_STATUS_RELATED g d L 9 P VRA 2 29%
USER_REFINED_RADAR_COMPOSITE_RELATED 0 a a] | D D .RAW 29%
USER_SENSOR_SITUATION_RELATED 0 0 0 1] [l 2 .RAW 2 29%
USER_STRATEGIC_MOB_SUMMARY 0 0 0 1 1 0 RAW 2 9%
USER_STRATEGIC_SUMMARY 0 0 0 1 1 .RAW 2 29%
PIM_VIM_RADAR_CAPABILITY 0 0 0 4 0 0 0 4 | .ADB 1 14%
SDG_EVENT_MESSAGE_GENERATOR 0 0 g d 4 t .ADB 1 14%
CONI_PROCESS_GSM_INJ_MESSAGE 0 3 .ADPB 114%
DGN_ALARM_PROCESSOR_ 0 3 0 0 q q q 3 .ADp] 14%
DGN_SCREEN_MANAGER_ 0 3 0 0 0 0 3 .AD$ 1 14po
GENB_MC_CONSTRUCT_ASCII_DATA 0 0 0 3 0 0 3 .ADB 1| 14%
SDG_MESSAGE_TIME_ORDERING 0 0 0 0 3 d 3 .ADB 1 %4
SDG_STATISTICS_POST_PROCESSOR D o 0 3 3 .ApBl1 14%
USER_DIRECT_RADAR_SITE_STATUS 0 0 0 3 a [l 3 .RAW 1 14%
VXT_TERM_LOGIN 0 0 0 0 3 0 0 3| .COM 1 149
CDT_THREAT_FAN_GRAPHICS 0 0 0 0 2 0 q 2| .ADB 1 14y
CMP_LORIG_ADAPTATION 0 0 0 0 2 0 0 2| .DAT 1 14%
CMT_VIM_SPEC_TOOL 0 0 0 0 0 0 2 2| .ADH 1 14%
CONR_RUNTIME_CONTROL 0 0 2 0 0 0 0 2| .ADH 1 14%
COR_STATUS_ALARM 0 0 0 0 0 2 0 2| .ADH 1 14%
CSO_LOGIN 0 0 0 0 2 0 0 2| .COM 1 149
DECW$CSO_TERM 0 0 0 0 2 0 0 2 | .DAT 1 149
DECWS$ENDSESSION 0 0 0 0 2 0 0 2 | .DAT 1 149
DECW$MWM 0 0 0 0 2 0 0 2 | .DAT 1 149
DECW$MWM_RC 0 0 0 0 2 0 0 2 | .DAT 1 149
DRD_VIEW_REAL_MESSAGE 0 0 0 0 0 0 2 2| .ADH 1 14%

89

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
FOM_FORMAT_PDS_M11 2 0 2l .ADB 1 14y
GDS_KEEP_ALIVE_YZ31 0 0 0 0 2 0 2| .INB 1 14%
GENB_MC_CONSTRUCT_MESSAGE_CONTENTS q P o 0 0 2ADB 1 14%
GENB_MC_RETRIEVE_ASCII_DATA 0 0 0 2 0 0 0 2| .ADH 1 14%
GENB_MC_RETRIEVE_MESSAGE_CONTENTS 2 D o PADB 1 14%
GENB_MC_RETRIEVE_MESSAGE_DEFAULTS . q D 2ADB 1 14%
GENB_MESSAGE_CONTENTS 0 0 2 g d 4 .ADB 1 14%
GENB_PROCESS_GSM_INJ_MESSAGE P 2 .ADB 114%
GENU_EP_PROCESS_DISTRIBUTED_CONTENTS 9 02 |.ADB 1 14%
MCIO_PUT_QUEUE_UTILITIES 0 0 0 0 0 0 2 2| .ADH 1 14%
PIM_VIM_ACTION_CK 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTION_CR 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTION_IT 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTION_K 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTION_KR 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTION_T 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTIONS 0 0 0 0 0 0 2 2| .ADB 1 149
PIM_VIM_ACTIONS_ 0 0 0 0 0 0 2 2| .ADS 1 149
PIM_VIM_CHECK_INBOUND_TASK_COMP 0 0 0 0 0 0 2 2| AD 14%
PIM_VIM_DISPOSITION_PROCESSING 0 0 0 a a @ p 2 ADB 1 14%
PIM_VIM_DUP_MESSAGES 0 0 0 0 0 0 2 2| .ADH 1 14%0
PIM_VIM_DUP_MESSAGES _ 0 0 0 0 0 0 2 2l .AD$ 1 14po
PIM_VIM_ICADS_EVENT_MESSAGE 0 0 0 0 0 0 2 2| .ADH 1| 14%
PIM_VIM_ICADS_EVENT_MESSAGE_ 0 0 0 0 0 0 2 2 .ADY 1| 14%
PIM_VIM_MESSAGE_HANDLER 0 0 0 0 0 0 2 2| .ADH 1 14%
PIM_VIM_MESSAGE_HANDLER_ 0 0 0 0 0 0 2 2| .ADS 1 14%
PIM_VIM_NUDET_EVENT_MESSAGE 0 0 0 0 0 0 2 2| .ADH 1| 14%
PIM_VIM_NUDET_EVENT_MESSAGE_ 0 0 0 0 0 0 2 2| .ADY 1 14%
PIM_VIM_SEWS_ML_EVENT_MESSAGE_ 0 0 0 0 0 a . 31 .ADH 1 14%
PIM_VIM_SEWS_MLU_EVENT_MESSAGE_ 0 0 0 0 0 a . 1 .BD 1 14%
PMP_PROCESS_FIELD_BINARY 0 0 0 0 g Y. 4 .ADB 1 14%
PMP_WRITE_MESSAGE_LOG 0 0 0 0 q q 4 4 .ADB 1 1404
QPR_ANALYSIS_INTERFACE 0 0 0 2 0 0 0 2| .ADH 1 14%
QPR_ANALYSIS_SQL_SUPPORT_ 0 0 g Y. D P .ADS I %14
QPR_CREATE_VIEWS 0 0 0 2 0 0 0 2| .ADB 1 149
QPR_CREATE_VIEWS_SQL_ 0 0 0 2 g [t 7 .ADB 1 14%
QPR_DATA_ANALYSIS 0 0 0 2 0 0 0 2| .ADB 1 149
QPR_DATA_REDUCTION 0 0 0 2 0 0 0 2| .ADH 1 149
QPR_DATA_REDUCTION_INTERFACE_ 0 0 0 2 0 a 31 ADS 1 14%
QPR_INTERNAL_STRUCTURES_ 0 0 0 2 g d 7 .ADB 1 14%
QPR_OPERATIONS .ADB 149
QPR_PROCESS .ADB 149
QPR_SQL_SUPPORT_ .ADS 1 149
RTR_RECORDING_TYPES q q 4 4 .ADB 1 1404
RTR_RTAD_RECORDING_TASK_COMP g d 2 7 .ADB I 14%
RTR_RTRD_RECORDING_TASK_COMP 4 D 1 .ADB 1 14%
SCN_OMP_ACTION_C 0 0 0 0 0 0 2 2| .ADB 1 149

90

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
SCN_OMP_GLOBAL_VARIABLES 0 0 0 0 0 2 0 2| .ADBH 1 14%
SCN_SYSC_NETWRK_CONTROL_TASR_COMP a @ P 0 2ADB 1 14%
SCN_SYSC_TYPES_ 0 0 0 0 0 2 0 2| .ADS 1 149
SDG_LOAD_DATABASE_FILES 0 0 0 0 2 0 0 2| .ADS 1 140
SDG_MISSION_GENERATOR 0 2 .ADB 1 14po
SGI_BASIC_TYPES 0 0 2 0 0 0 0 2| .ADB 1 149
SGI_CSSR_INTERFACE_MESSAGE_ g d 9 2 P .AQS 1 14%
SGI_DISPLAY_TEXT 0 0 2 0 0 0 0 2| .ADB 1 149
SGI_RESET_DUPLICATE_MESSAGE_ 0 0 g [t p P .ADS L 14%
SGI_TABLE_IX 0 0 2 0 0 0 0 2| .ADB 1 149
SSP_READ_AREA_OF_INTEREST_POINTS q 2 DBA 1 14%
SSP_SSP_SEWS_TASK_COMP D 0 2 .ADB 1 1%
START_LOGIN 0 0 0 0 2 0 0 2| .COM 1 149
TDBA_DATABASE_ACCESS_ 0 0 0 2 0 0 .ADY 1 14y
USER_SUMMARY_DATA_MENU 0 0 0 2 0 0 0 2| .RAW 1 14%
USER_SYSTEM_SUMMARY 0 0 0 0 0 2| .RAW 1 14%0
ARCH_CONTROL_PROCEDURES q 1 q D | .ADB 1 14%
ARCH_CONTROL_PROCEDURES_ 1 D] .ADS L 14%
ARCH_TASK_INIT 0 0 0 1 0 0 0 1] .COM 1 149
ARCHIVE_CONTROL_TASK_COMP 1 0 1{ .ADH 1 b4
ARCN_INTERNAL_STRUCTURES .AD$ 1 %4
CCO_APCC_ADDRESSES_OPERATIONAL q q D o L .DAT 1 14%
CCO_CMAFB_ADDRESSES_OPERATIONAL 0 0 q q 1 D | DA 14%
CCO_MAP_DESTINATION_TO_LL 0 0 0 0 1 0 0 1| .DAT| 1 %A
CCO_TDTC_ADDRESSES_OPERATIONAL 0 0 g d D | DAT 1 14%
CCPDSR_STATUS_KSO01 0 0 0 a] (.ourt 14%
CCPDSR_STATUS_REEP_ALIVE_KS02 q q q L o L .OyT 1 14%
CCS_GEOGRAPHIC_SEARCH_ 0 0 g D] .ADS L 14%
CDT_AOI_BUILD_PROCEDURES 0 0 0 0 1 0 g 1 .ADB 1 14po
CDT_AOI_MAPPING 1 0 0 0 0 0 0 1| .DAT 1 149
CFG_NAS_MESSAGE_INFORMATION_ 0 0 0 1 q q q ADH 1 14%
CMN_DEV_TO_OPERATIONAL 0 0 0 1 0 0 0 1| .COM 1 14%
CMP_LORIG_APE_DB 1 0 0 0 0 0 0 1| .DAT 1 149
CMP_TRD_COORDINATE_DB 0 0 0 0 1 0 0 1{ .DA1 1 14%0
CMP_TRD_COUNTRY_DB 0 0 0 0 1 0 0 1| .DAT 1 14%
CMP_TRD_SEGMENT_DB 0 0 0 0 1 0 q 1 .DAT 140
CMT_LTD_LOAD_FIELD_DEFINIT10ON 0 0 0 1 0 0 0 1| .ADB 14%
CMT_LTD_LOAD_FIELD_DEFINITION_ 0 0 0 1 0 0 1| .ADS 14%
CMT_SGI_WRITE_SPEC_FOM 0 0 0 0 il d .ADB il 14%
CMT_TOOL_VIM_MAKE_ENUMERATION_BOTH 0 0 0 1 0 0 0 1|.ADB 1 14%
CMT_VIM_ROUTINES 0 .ADB 1 149
COMPLEX 0 INPY 1 14%
CONI_CONI_INITIATION_TASK_COMP 0 0 1 . .ADB 14%
CONI_CONI_INITIATION_TASR_COMP 0 1| .ADH 14%
CONI_SCENARIO_INITIATION 0 0 1 0 0 0 0 1| .ADB 1 149
CONI_START_PROCESSING 0 0 1] a a (.ADB] 14%

91

Do

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
CONR_BUILD_EXECUTION_CONTROL_DISPLAY 0 0 1 0 0 0 q .ADB 1 14%
CONR_REPOSITION_SCENARIO 0 0 1 a [l] .ADB] 14
COR_CONTROL_PROCESSING a @ D L .AQB | 14
COR_DATA_MAINTENANCE 0 1 1| .ADB 1 149
COR_ROUTING .ADB 149
COR_TYPES_ .ADS 1 149
CSD_CANCEL_DATA_RECORDING_CHANGES 0 0 0 a] [l 1ADB 1 14%
CSD_CANCEL_MESSAGE_PRINTING_CHANGES q q D o LADB 1 14%
CSD_CONFIRM_TAPE_NOTIFICATION 0 0 0 1 0 0 q 1] .ADB 1 14%
CSD_CREATE_HARDWARE_STATUS_MENU 0 0 0 0 1 BD| 1 14%
CSD_CREATE_HARDWARE_STATUS_SUBMENU 0 0 q q 1 D |.ADB 1 14%
CSD_CREATE_PRINTABLE_MESSAGES_MENU 0 a a [l D LADB 1 14%
CSD_CREATE_RECORDABLE_DATA_MENU 0 0 0 0 1 a a y .BD| 1 14%
CSD_ERM_ALARM_PROCEDURES _ 0 0 0 1 a [l] .ADS %l 4
CSD_INITIALIZATION_ 0 1 1| .ADS 1 149
CSD_MENUS 1| .ADB 1 149
CSD_MENUS_ 1 0 .ADS 1 149
CSD_MONITOR_LOG_PROCEDURES_ q q q D o L .AOS L 14%
CSD_OPERATIONS_ 0 0 0 1 0 0 0 1] .ADS 1 149
CSD_PROCESS_KEYBOARD_INPUT 0 0 g]] .ADB 4%
CSD_RECONFIGURATION_PROCEDURES_ @ o 1 SAD 1 14%
DECW$5MB_WINDOW_COLOR 0 0 0 0 1 0 0 1| .DAT 1 14
DECW$CSSO_TERM 1 .DAT 149
DECW$DRD_TERM 1 .DAT 149
DECWS$IWO_TERM 1 1| .DAT 1 149
DECW$SMB_BACKGROUND 0 0 0 0 1 0 0 1| .DAT| 1 144
DECW$SMB_BACKGROUND_COLOR 0 0 0 0 1 0 g 1 .DAT %4
DECW$SMB_WINDOW 0 0 0 0 1 0 0 1| .DAT| 1 149
DECW$VMSP_TERM 0 0 0 0 1 0 0 .DAT 149
DECW$WSO_TERM 0 0 0 0 1 0 0 .DAT 149
DGN_BOUNDARY_POINTS 0 0 0 1 0 0 1| .DAT| 1 144
DGN_BUFFER_TYPES_ 0 1 0 0 0 a a i .ADH 1 14
DGN_CONFIGURATION_ 0 0 0 1 0 0 0 1| .ADSY 1 14
DGN_DISPLAY_DATABASE_IO 0 0 0 0 1 0 0 1| .ADB 1 149
DGN_FDB_DATA_STRING 0 0 0 1 0 0 0 1| .ADH 1 149
DGN_FORMAT_BUILD 0 0 0 0 1 0 0 1| .ADB 1 149
DGN_FORMAT_BUILD_TYPES 0 0 1 0 0 0 0 1| .ADH 1 144
DGN_GKS_ESCAPES_ 0 0 0 0 1 0 0 1] .ADS 1 149
DGN_GRAPHICS_INTERFACE 0 1 0 0 0 0 g 1 .ADB 1 14
DGN_GRAPHICS_INTERFACE_ 0 a iy .ADp il 14
DGN_IR_COVERAGE 1 0 0 0 0 0 0 1| .DAT 1 149
DGN_MAP_TYPES_ 0 0 0 0 1 0 0 1] .ADS 1 149
DGN_MAPFIL 0 0 0 0 1 0 0 1| .DAT 1 149
DGN_MENU_FORMS_ 0 1 0 0 0 0 0 1] .ADS 1 149
DGN_MOVE_DATABASE_VALUE 0 0 0 1 0 0 0 1| .ADB 1 149
DGN_POLFIL 0 0 0 0 1 0 0 1| .DAT 1 149
DGN_PROCESS_FIELD_DATA_LIST 0 0 0 1 q q q 1 .ADB 1 14%

92

14%

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
DGN_RECORD_TEXT_IO 0 0 0 0 1 0 0 1{ .ADH 1 14
DGN_SINO_SOVIET_REGIONS 0 0 0 1 q 1 .DAT 1 14
DGN_SMGR_SCREEN_TASK_COMP D] .ADB %l 4
DGN_SYMBOL_TABLE 0 1 0 0 0 0 0 1| .ADB 1 149
DGN_SYMBOL_TABLE_ 0 1 0 0 0 0 0 1] .ADS 1 149
DGN_TRD_POINTS 0 0 0 0 1 0 0 1| .DAT 1 149
DGN_WINDOW_MANAGEMENT 0 1 0 0 0 0 0 1| .ADB 1 149
DGN_WINDOW_TYPES_ 0 0 0 0 0 1| .ADS 1 14
DMG_RETRIEVAL_SERVICES 0 0 1 0 0 1| .ADH 14
DRD_DO_ACTIONS 0 0 0 0 1 0 0 1| .ADB 1 149
DRD_GLOBALS_ 0 0 0 0 1 0 0 1] .ADS 1 149
DRD_MENUS 0 0 0 0 1 0 0 1| .ADB 1 149
DRD_MENUS_ 0 0 0 0 1 0 0 1] .ADS 1 149
DRD_OPERATIONS 0 0 0 0 1 0 0 1| .ADB 1 149
DRD_PROCESS 0 0 0 0 1 0 0 1| .ADB 1 149
DRD_PROCESS_OPERATOR_ACTION_LOG q D D o 1 BADp 1 14%
DRD_PROCESS_SYSTEM_REPORT D 1 1 .ADB 1 %]
DRD_PROCESS_SYSTEM_REPORT_ D D 1 1 .APS 1 4%]
ERM_DATABASE 1 0 1| .ADB 1 149
ERM_TYPES_ .ADS 1 149
FDB_INITIALIZE_DATABASE 1 1| .ADB 1 14%
FDB_INITIALIZE_REMOTE_PROCESS 1 a y .ADB 1 14%
FDB_MASTER_SERVICES 1 0 g 1 .ADB 1 14
FDB_MESSAGES 1 .ADB 1 149
FDB_MESSAGES_ 1 1] .ADS 1 149
FDB_READ_SERVICES 0 0 0 1 0 0 q 1 .ADB 1 14
FDB_READ_SERVICES _ 0 0 0 1 0 0 g 1 .AD$ 1 14
FDB_RECEIVE_FDB_UPDATE 0 0 0 1 0 0 q 1] .ADEF 1 14
FDB_WRITE_SERVICES 0 0 0 1 0 0 q 1 .ADB 1 14
FDB_WRITE_SERVICES_ 0 0 0 1 0 0 g 1 .AD$ 1 14
FOM_FOE_ACTION_M 0 0 0 0 0 1 0 1| .ADH 1 149
FOM_FOE_ACTION_T 0 0 0 1 0 0 0 1| .ADB 1 149
FOM_FOE_ACTIONS_X 0 0 1 0 0 1| .ADH 14
FOM_FOE_COMMON_UTILITIES 0 1| .ADH 144
FOM_FOE_PROCESS_DISCRETE_CHANGES 1DBA 14%
FOM_FOE_PROCESS_NON_DISCRETE_CHANGES 01 |(.ADB 1 14%
FOM_FOE_READ_FDB_CHANGES 0 0 0 1 g d 1 .ADB 1
FOM_FOE_READ_FDB_NON_DISCRETE 0 0 g] D] ADB 1 14%
FOM_FORMAT_FORWARD_USERS_AUO08 0 0 1 q q D | .ADB 1 14%
FOM_FORMAT_FORWARD_USERS_AUO9 0 0 q q 1 D | .ADB 1 14%
FOM_FORMAT_FORWARD_USERS_MTO02 0 0 q q q D | .ADB 1 14%
FOM_FORMAT_PDS_A1 0 0 0 1 0 0 0 1{ .ADH 1 14
FOM_FORMAT_PDS_A2 0 0 0 1 0 0 0 1{ .ADH 1 14
FOM_FORMAT_PDS_C1C 0 0 0 1 0 a a y .ADB 1 14
FOM_FORMAT_PDS_C3 0 0 0 1 0 0 g 1 .ADB 1 14
FOM_FORMAT_PDS_C4 0 0 0 1 0 0 g 1 .ADB 1 14
FOM_FORMAT_PDS_I1 0 0 0 1 0 0 0 1{ .ADH 1 14

93

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
FOM_FORMAT_PDS_l14 0 0 0 1 0 0 0 1{ .ADH 1 14%0
FOM_FORMAT_PDS_M10 0 0 0 1 0 0 q 1 .ADB 1 14y
FOM_FORMAT_PDS_M11_ 0 0 0 1 0 0 g 1 .AD$ 1 1404
FOM_FORMAT_PDS_M12 0 0 0 1 0 0 q 1 .ADEF 1 14y
FOM_FORMAT_PDS_M13 0 0 0 1 0 0 q 1 .ADEF 1 140
FOM_FORMAT_PDS_M14 0 0 0 1 0 0 q 1 .ADEF 1 140
FOM_FORMAT_PDS_M15 0 0 0 1 0 0 q 1 .ADEF 1 14y
FOM_FORMAT_PDS_M16 0 0 0 1 0 0 q 1 .ADB 1 14y
FOM_FORMAT_PDS_M4 0 0 0 1 0 0 0 1{ .ADH 1 14%0
FOM_FORMAT_PDS_M5A 0 0 0 1 0 0 0 1| .ADH 1 14%0
FOM_FORMAT_PDS_M6 0 0 0 1 0 0 0 1{ .ADH 1 14%0
FOM_FORMAT_PDS_M78? 0 0 0 1 0 a a i .ADB 1 14p4
FOM_FORMAT_PDS_N3 0 0 0 1 0 0 q 1 .ADEF 1 14y
FOM_FORMAT_PDS_N5 0 0 0 1 0 0 q 1 .ADEF 1 14y
FOM_FORMAT_PDS_T2 0 0 0 1 0 0 q 1 .ADB 1 14%0
GENB_MC_INJECT_MESSAGE 0 0 0 1 q q q 1 .ADB 1 1404
GENU_CR_RETRIEVE_RECORDED_MESSAGES 0 0 1ADB 1 14%
INITIALIZE_NETWORK 0 0 0 1 1] .INI 1 149%
INITIALIZE_NETWORR 1 1(.INI 149
INJP_INJECTION_PROCESSING 0 a] (L .AQB | %14
INM_CONFIGURE_SYSTEM 0 0 0 0 1 0 0 1| .ADH 1 14%
INM_CREATE_MENU_DISPLAY 0 0 0 0 1 0 0 1| .ADB 1 14%
INM_DISPLAY_COLORS 0 0 0 0 1 0 0 1| .ADH 1 14%
INM_DISPLAY_COLORS_ 0 0 0 0 1 0 0 1| .ADY 1 14%
INM_ERM_PROCEDURES 0 0 0 0 1 0 g 1 .ADB 1 14po
INM_INITIALIZATION 0 0 0 0 0 1 |.ADB 1 14%
INM_MENU_DEFINITION 0 0 0 0 1 0 0 1| .ADB 1 149
INM_MENU_PROCESSING 0 0 0 0 1 0 q 1 .ADB 1 14y
INM_NMO_MENUS 1 .ADB 149
INM_OPERATIONS 1 .ADB 149
INM_RECONFIGURATION_PROCEDURES a] (] ADB 1 14%
INM_USI_PROCEDURES_ 0 0 0 0 1 a a iy .ADH 1 14%
INW_MENUS 0 0 1 0 0 0 0 1| .ADB 1 149
ITC_NODE_MANAGER 0 1 0 0 0 1| .ADB 1 14%
ITC_WATCHDOG_PROCEDURES 0 0 1 g d 1 .ADB 1 14%
ITC_WATCHDOG_PROCEDURES_ 0 0 1 a @ y .ADS 14%
LAUNCH_SUMMARY_COUNTS_CC10 0 0 1 0 .CCC 1 4%
LAUNCH_SUMMARY_COUNTS_CC10 0 0 0 .CCC 4%
M11_DETAILED_MOB_CM15 0 0 0 1 0 0 0 1| .OuT 1 14%
M17_REENTRY_REPORT_CM21 0 0 0 a a]] .Ourt 14%
M3_MISSILE_ATTACK_SUMMARY_CMO08 0 0 0 0 0 0 1 .outl 1 14%
MCIO_MCS_BASIC_UTILITIES 0 0 0 0 0 .ADB 1 14%
MCIO_MCS_MAS_REAL_ACTION_ROUTINES 0 0 0 0 0 1 g 1 ADB 1 14%
MCIO_PUT_BASIC_UTILITIES_ 0 0 0 0 0 1 0 1| .ADY 1 %A
MCIO_PUT_DI_ACTION_ROUTINES 0 0 0 0 0 0 1{ .ADH 1 14%
MCIO_PUT_GLOBAL_DATA_ 0 0 0 0 0 1 0 1] .ADS 1 14%
MCIO_PUT_GLOBAL_TYPES_ 0 0 0 0 1 0 0 1{ .ADY 1 14p6

94

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total [Type Count | Percent
N2_NUDET_SUMMARY_CM31 0 0 0 0 1 0 0 1| .OuUT 1 14%
NAS_INSTALL 0 0 0 0 0 1 0 1] .COM 1 149
NETWORK_PROCESS_DEFINITION 0 0 0 0 1 1 .INQ 1 4%
NMP_NMP_NUDET_TASK_COMP 0 0 0 1 0 0 q 1 .ADB 1 14%0
NMP_NUDET_DATABASE 0 0 0 0 1 0 0 1| .ADB 1 14%
NUT_SCREEN_MANAGEMENT 0 0 0 1 0 0 .ADH 1 14%
NUT_SCREEN_MANAGEMENT_ 0 0 1 0 0 1| .ADS 1 14y
OMP_TASK_INIT .COM 149
OMP_TASR_INIT .COM 149
OPERATIONAL_A9_REPUBLIC_SORTED 0 0 0 0 1 q q 1 ™R 1 14%
OPERATIONAL_ALL_INTEGRITY_SORTED 0 0 0 0 1 0 0 1 TNPU 1 14%
OPERATIONAL_BLUE_LAUNCHES_SCENARIO 0 0 0 0 1 0 g 1 IN PU 1 14%
OPERATIONAL_STATUS_CCO03 0 0 1 0 0 0 g 1 . .CCC] 14%
PIM_VIM_ACTION_E 1 .ADB 149
PIM_VIM_ACTION_R 1 .ADB 149
PIM_VIM_GET_SENSOR_SOURCE_ 0 0 g d D] .ADS I 4%l
PIM_VIM_GET_SOURCE 0 0 1 0 0 0 0 1| .ADH 1 14%
PIM_VIM_ITC_UTILITIES 0 0 1 0 0 0 1| .ADB 1 149
PIM_VIM_ITC_UTILITIES_ 0 0 0 1 0 0 0 1| .ADS 1 149
PIM_VIM_QUICK_ALERT_MESSAGE 0 0 1 0 0 0 0 .ADH 1| 14%
PIM_VIM_QUICK_LOOK_MESSAGE 0 0 1 0 0 0 0 .ADH 1| 4%
PIM_VIM_RADAR_CAPABILITY_ 0 0 0 1 0 0 0 1| .ADS 1 P4
PIM_VIM_SEWS_MS_EVENT_MESSAGE 1 g [t 1 ADB 1 14%
PIM_VIM_SEWS_R_EVENT_MESSAGE 1 g [t 1 .ADB 1 14%
PMP_FORMAT_IDS_FOR_TIME_VAL 0 0 0 0 1 0 0 1{ .DA1 1 14%
PMP_MUT_UNIQUE_VALIDATION 1 1| .ADB 1 14
PMP_MUT_UNIQUE_VALIDATION_ 1| .ADS 1 4%
PROCESS_WATCHDOG_LOGICALS 0 0 0 1 a [l] .CgM %l 4
PSDC$SCHEDULE 0 .DAT 149
QPR_BUILD_SQL .COM 1 149
QPR_SENSOR_SQL_SUPPORT_ 1 0 0 0 1 .ADS 1 14%
QPR_SQL_CREATE 0 0 0 0 1 0 0 1 bSQLMO 1 14%
RADAR_LAUNCU_EVENT_CC25 0 0 0 1 0 0 0 1 .CC(q 1 14p6
RMP_BASIC_TYPES_ 0 0 0 0 1 0 0 1] .ADS 1 149
RMP_RADAR_DATABASE_ 0 0 0 1 0 0 1| .ADS 1 14%
RMP_THREAT_NONTHREAT 0 0 0 0 0 1| .ADH 1 149
RTR_CALCULATE_STORAGE 0 0 1 0 0 1| .ADH 1 14%
RTR_RECORDING_TYPES_ 0 0 0 0 1 d 1 .ADB 1 14%
RTR_TERMINATE_RECORDABLE 0 0 0 0 1 0 0 1| .ADH 1 14%
SAS_ETC_LINK 0 0 0 1 0 0 0 1 -KCMNLN 1 14%
SAS_NODES 0 .DAT 149
SAS_PROCESSES 1 1| .DAT 1 149
SCN_ERROR_PROCESSING g d L 0 1L .AQB L 14%
SCN_OMP_ACTION_A 0 0 0 0 0 1 0 1| .ADH 1 149
SCN_OMP_ACTION_B 0 0 0 0 0 1 0 1| .ADB 1 149

95

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total [Type Count | Percent
SCN_OMP_ACTION_G 0 0 0 0 0 1 0 1{ .ADH 1 14%0
SCN_OMP_BANNER 0 0 0 1 0 0 0 1| .DAT 149
SCN_OMP_GLOBAL_VARIABLES_ 0 1 1| .ADS 1 b4
SCN_OMP_PRINT_COMMAND 0 0 1{ .COM 1 14po
SCN_OMP_PRINT_MESSAGE_TASR_COMP (o 1 0 1 BAI 14%
SCN_OMP_PRINT_MESSAGES_TASK_COMP q o 1 0 1 DBA 14%
SCN_PROCESS_FLOW_CONTROL g d D L 0 L .AQB L 14%
SCN_PROCESS_MCIO_STATUS q q q D L o L .AOB L 14%
SCN_PROCESS_SYSTEM_MODE g d D L 0 L .AQB L 1#%
SCN_PROCESS_TEST_CONTROL q o 1 0 1 .APB L 1h%
SCN_SYSC_DATA 0 0 1 0 0 0 0 1| .ADB 149
SCN_SYSC_READ_CONNECTIVITY_SITES 0 0 1 q q D | DB 14%
SDG_2XJCS 0 0 0 0 1 0 0 1] .INPY 14%
SDG_BASIC_TYPES 0 0 0 0 1 0 0 1 T.ADB 149
SDG_DATABASE_DEFINITIONS_ 0 0 0 0 1 0 0 1| .AD{§ 1 %4
SDG_LORIG_ALGORITHM_LIBRARY 0 0 0 0 1 0 0 1| .ADB 1| 14%
SDG_LORIG_ALGORITHM_LIBRARY_ 0 0 0 0 1 0 0 1| .ADS 1 14%
SDG_LORIG_DATABASE_DEFINITIONS_ 1 0 0 0 0 0 q 1] .AD 14%
SDG_PHYSICAL_CONSTANTS 0 0 0 0 1 0 g 1 .ADB 1 14po
SDG_SAT_SENSOR_CORR 0 a a (| D D L .DAT | 14%
SEC 0 .COM 149
SEC_ADD_USER 1] .COM 149
SEC_IMTERNAL_STRUCTURES_ 0 0 0 0 1 q 1 .ADp] 14%
SEC_INSTALL_TEMPLATES 0 0 0 0 1 0 0 1[.CON 1 14%0
SECRET_SCREEN 0 0 0 0 1 0 0 1| .DAT 149
SEWS_R_EVENT_CC20 0 0 0 0 g 1 1 .CCC | 14%
SGI_CC_TOTAL_RADAR_OBJECTS_MESSAGE g D 9 [LADB 14%
SGI_CCPDSR_REEP_ALIVE_MESSAGE_ a [l D 1 1 ADS 1 14%
SGI_CSO_SYSC_PROCESS_STATUS_MESSAGE_ 0 0 0 0 1 01 [.ADS 14%
SGI_DISPLAY_TYPES 0 0 1 0 0 0 0 1| .ADB 149
SGI_FDB_INVENTORY_MESSAGE_ 1 a a iy .ADH 1 4%
SGI_FDB_MISSILE_LAUNCH_MESSAGE_ 0 0 1 q q q 1 8D 14%
SGI_FDB_TYPES_ 0 0 0 1 0 0 0 1] .ADS 149
SGI_FUNCTION_KEY_INPUT_MESSAGE_ 0 1 0 0 g [t 1 3D 14%
SGI_FUSED_DATADASE_ 0 0 0 1 0 0 1{ .ADY 14p6
SGI_KEEPALIVE_MESSAGE 0 0 1 0 0 0 1| .ADH 1 14%0
SGI_MCIO_BASIC_TYPES_ 0 0 0 0 0 1 g 1 .AD$ 1 1404
SGI_MENU_TYPES_ 0 0 0 1 0 0 0 1] .ADS 149
SGI_PDS_l4_MESSAGE 0 0 1 0 g d 1 .ADB 1 14%
SGI_PDS_M14_MESSAGE 0 0 1 a a [l] .ADB] 14%
SGI_PDS_M15_MESSAGE 0 0 1 a a [l] .ADB] 14%
SGI_PDS_M17_MESSAGE 0 0 1 a a [l] .ADB] 14%
SGI_PDS_M1A_MESSAGE 0 0 1 0 q q q 1 .ADB 1 1404
SGI_PDS_S1_MESSAGE 0 0 il d D] .ADB 14%
SGI_PERFORMANCE_LOG_MESSAGE_ q q q L D L .AOS L 14%
SGI_PRINT_REQUEST_MESSAGE_ q q q L D L .AOS L 4%1

96

L%

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total [Type Count | Percent
SGI_QUICK_ALERT_MESSAGE 1] .ADIF 1 14
SGI_QUICK_LOOK_MESSAGE 1 .ADB 1 14
SGI_RECORDING_TYPES_ 0 0 0 0 .ADB] 14
SGI_RTRD_PRIMARY_SHADOW_COORD_MESSAGE _| a [l D D 1 0 1 |.ADS 1 14%
SGI_SEWS_ML_EVENT_MESSAGE 0 0 1 a a [l] .ADB] %44
SGI_SEWS_MLU_EVENT_MESSAGE 0 0 1 a a [l] .ADB 1 4%
SGI_SEWS_MS_EVENT_MESSAGE 0 a] (D D L .AQB | %14
SGI_SEWS_R_EVENT_MESSAGE 0 a] [l D D L .AQB | 14
SGI_SPRF_TIMED_WRITE_MESSAGE_ 0 a a @ | D D L .AQS 14%
SGI_SYSC_TYPES_ 0 0 0 0 0 1 0 1] .ADS 1 149
SGI_TAPE_DATABASE_MESSAGE_ 0 0 0 1 q q q 1 .ADp 1 4%
SGI_TAS_TYPES 0 0 1 0 0 0 0 1| .ADB 1 149
SGI_TAS_TYPES_ 0 0 0 0 1 0 0 1] .ADS 1 149
SHUTDOWN_VDSI1 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_VDSI2 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_VDSI3 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_WSCO06 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_WSCO07 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_WSCO08 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_WSCO09 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_WSC10 0 0 0 0 0 1 0 1] .RCF 1 149
SHUTDOWN_WSCII 0 0 0 0 0 1 0 1] .RCF 1 149
SITE_STATUS_SMO03 0 0 0 1 0 0 0 1] .INB 1 149
SPM_INPUT_PARAMETERS 0 0 0 0 1 0 g .DAT 1 14
SPRF_SPM_PERF_MONITR_TASK_COMP ((D D L 0 0 1 .APB 14%
SPRF_SPM_PERFORM_SPM_PERFORMANCE 0 0 0 0 1 0 1DB.A 14%
SPRF_SPM_SERVICES 0 0 0 0 1 0 0 1| .ADB 1 149
SPRF_SPM_SERVICES_ 0 a a (| D D L .AQS L 1
SPRF_WSCO06_MONITORED_DEVICES q q q D L o L .DAT L 14%
SPRF_WSCO07_MONITORED_DEVICES q q q D L o L .DAT L 14%
SPRF_WSCO08_MONITORED_DEVICES q q q D L o L .DAT L 14%
SPRF_WSC09_MONITORED_DEVICES q q q D L o L .DAT L 14%
SPRF_WSC10_MONITORED_DEVICES q q q D L o L .DAT L 14%
SPRF_WSCII_MONITORED_DEVICES 0 0 0 a a .DATT 1 14%
SSDCWS 0 0 0 0 1 0 0 1] .INPY 14%
SSP_BASIC_TYPES 1 0 0 0 0 0 0 1 T.ADB 1 149
SSP_TIME_TO_IMPACT 0 0 0 0 1 0 0 1{ .ADH 1 14
STARTUP_ARCHIVE_PROCESS 0 0 q 1 q D | .Cg™m | 14
STARTUP_VDSI1 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_VDSI2 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_VDSI3 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_WSCO06 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_WSCO07 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_WSCO08 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_WSCO09 0 0 0 0 0 1 0 1] .RCF 1 149
STARTUP_WSC10 0 0 0 0 0 1 0 1] .RCF 1 149

97

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
STARTUP_WSCII 0 0 0 0 0 1 0 1] .RCF 1 149
T1_SITE_STATUS_REPORT_CM38 0 a] (D D L .oyt L 4%1
TAS_DATABASE 0 1 .RDO| 1 149
TAS_THROTTLE 0 1| .DAT 1 149
TDBA_READ_FIELD_LIST 0 1 0 0 1 -ASQLAD 1 14%
TERMINATE_TEST_EXERCISE 0 0 0 0 0 1 q 1] .FCH il 140%
TESTCTL_INIT 0 .COM 1 149
THIRTY1 0 1] INPY 1 14%
TIFP_TIFP_INTERFACE_TASK_COMP 0 0 0 0 g] 1 5 ADB 1 14%
TMBL_BUILD_INJECTION_MESSAGE 0 0 0 1 0 0 1| .ADH 1 14%
TMBL_MC_CONVERT_MESSAGE 0 0 0 1 0 0 1{ .ADH 14%0
TOTAL_RADAR_OBJECTS_CCO05 0 0 1 0 q q 1 .CCC 14%
USER-WS03_SUITE_O1 0 0 0 0 il d 1 .RA] 14%
USER_ALARM_ASSIGNMENT 0 0 1 0 0 0 0 1| .RAV 1 149
USER_ALARM_ASSIGNMENT_SUMMARY_NCC 0 0 1 0 0 0 1{ RAW 1 14%
USER_ANTARCTIC_CENTER 0 0 0 0 1 0 RAW 1 14po
USER_ASSESSMENT_AND_VALIDATION_RELATED 0 0 1 0 0 q 0 .RAW 1 14%
USER_CINCNORAD_WARNING_SUMMARY 0 0 1 0 0 0 0 1| .RA 1 14%
USER_CINCNORAD_WARNING_SUMMARY_RELATED| 0 0 0 1 0 o O .RAW 1 14%
USER_CMAFB_SYSTEM_STATUS_GRAPHIC 0 0 il d D] AR 1 14%
USER_CONTROL_ 0 0 0 1 0 0 0 1] .ADS 1 149
USER_CONUS_CENTER 0 0 0 0 1 d 1 .RAW] 14%
USER_CONUS_LEFT 0 0 0 0 1 0 0 1] .RAW 1 149
USER_CORRELATED_CONN_STATUS 0 0 1 q q D | .RAW 1 14%
USER_CORRELATED_CONN_STATUS_PREFORMAT q D o 0 0 .RAW 1 14%
USER_CORRELATED_CONN_STATUS_RELATED 0 a] [l D D LRAW 14%
USER_CORRELATED_SCIS_STATUS_RELATED g d D 9 0 LRAW 14%
USER_DEFCON_LERTCON_RELATED 0 0 1 a a [l] .RAW 1 14%
USER_DETAILED_ICADS_LIST_RELATED 0 0 0 1 0 0 0 1 ARV 1 14%
USER_DETAILED_MOB 0 0 0 1 0 0 1| .RAV 1 14%
USER_DETAILED_MOB_PREFORMAT 0 0 0 1 0 0 g 1 .RAW U 14%
USER_DETAILED_MOB_RELATED 0 0 0 1 0 0 0 1 .RAV 1 %A
USER_DETAILED_NUDET_LIST_RELATED 0 0 0 1 0 0 0 1 ARV 1 14%
USER_DETAILED_RADAR_EVENTS 0 0 0 1 0 0 0 1 .RAW 4%
USER_DIRECT_CS2_STATUS_RELATED 0 a] (D D I .RAW 1 14%
USER_DIRECT_CS3_STATUS_RELATED 0 a] (D D I .RAW 1 14%
USER_DIRECT_DDC_STATUS_RELATED 0 0 1 a a [l] .RAW 1 14%
USER_DIRECT_DSP_SITE_STATUS q q q L L .RAW L 14%
USER_DIRECT_DSP_SITE_STATUS_RELATED a (| D D o 1RAW 1 14%
USER_DIRECT_LAUNCH_SUMMARY_RELATED 0 0 0 1 0 0 0 1{.RAW 1 14%
USER_DIRECT_NUDET_SUMMARY_RELATED 0 0 0 1 0 0 g 1 RAW 1 14%
USER_DIRECT_RADAR_IMPACT_SUMM_RELATED 0 0 0 1 0 a a .RAW 1 14%
USER_DIRECT_RADAR_LAUNCH_SUMM_RELATED 0 0 0 1 0 0 g .RAW 1 14%
USER_DIRECT_RADAR_SITE_STATUS_RELATED 0 il (D .RAW 1 14%
USER_EUROPE_CENTER 0 0 q q 1 D | .RAW 14%
USER_EUROPE_ICADS_SITUATION_RELATED 0 q 1 q D . RAW 1 14%

98

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
USER_EUROPE_NUDET_SITUATION_RELATED 0 q 1 q D |. RAW 1 14%
USER_ICADS_ASSESSMENT_RELATED 0 g 1 D] .RAW 1 14%
USER_ICADS_SITUATION_RELATED_ 0 0 0 1 0 0 q 1] .RAWV 1 14%
USER_ICADS_SITUATION_THEATER_MAP_2698 0 0 1 D 1 |.RAW 1 14%
USER_IR_LAUNCH_COMPOSITE_RELATED 0 0 0 1 g [t 1 AR 1 14%
USER_IR_LAUNCH_LISTING_RELATED 0 0 0 1 0 0 1| .RA 1 14%
USER_IR_SIIUATION_RELATED 0 0 0 0 1 0 1 .RAV 1 %A
USER_IR_SITUATION_MAP_OVERLAYS 0 0 0 0 1 0 0 1] .RAW 1 14%
USER_IR_SITUATION_THEATER_MAP_OVERLAYS 0 0 0 0 1 q o 1 |.RAW 14%
USER_KOREA_CENTER 0 0 0 0 1 0 g 1 .RAW 1 14p4
USER_KOREA_ICADS_SITUATION_RELATED 0 0 0 1 0 0 g 1. RAW 14%
USER_KOREA_NUDET_SITUATION_RELATED 0 0 0 1 0 0 g 1. RAW 14%
USER_MIDEAST_CENTER 0 0 0 0 1 0 q 1 .RAWV 1 14po
USER_MIDEAST_ICADS_SITUATION_RELATED 0 0 0 1 0 0 q .RAW 14%
USER_MIDEAST_NUDET_SITUATION_RELATED 0 0 0 1 0 0 q .RAW 14%
USER_MINUTES_TO_REPORT_FOED q q 1 D D o L .RAW L 14%
USER_MINUTES_TO_REPORT_FOED_MAIN_MENU a] [l D P 1 |.RAW 1 14%
USER_MINUTES_TO_REPORT_FOED_PREFORMAT 0 0 0 01 ([.RAW 1 14%
USER_MISSILE_ATTACK_SUMMARY 0 0 1 0 0 0 0 1| .RAV 1| 14%
USER_MISSILE_WARNING_SUMMARY 0 0 1 0 0 0 0 1[.RA 1| 14%
USER_MISSILE_WARNING_SUMMARY_RELATED 0 0 0 1 0 0 0 1 |.RAW 1 14%
USER_MOB_SUMMARY 0 0 0 1 0 0 0 1| .RAV 1 14%
USER_MOB_SUMMARY_PREFORMAT 0 0 0 1 0 0 g 1 .RAW Y 4%
USER_MOB_SUMMARY_RELATED 0 0 0 1 0 0 0 1[.RA 1 14%
USER_MTF_DB 0 0 1 0 0 0 0 1| .DAT 1 149
USER_NA_ICADS_SITUATION_RELATED 0 0 0 0 0 0 1| .RA 14%
USER_NA_NUDET_SITUATION_RELATED 1| .RA 14%
USER_NONINTERACTIVE 0 0 1 0 0 0 0 1| .ADH 1 14%
USER_NORAD_IR_LAUNCH_COMPOSITE_RELATED 0 0 q 1 q 0 .RAW 1 14%
USER_NORAD_PRELIM_RADAR_COMPOSITE_BSE q | D D 0O 1 |.RAW 1 14%
USER_NORTH_AMERICA_CENTER 0 0 0 0 1 a a § .RA 1 %4
USER_NORTH_AMERICAN_WARNING_PREFORMAT 0 0 0 1 g d 1 |.RAW 14%
USER_NORTH_AMERICAN_WARNING_RELATED 0 0 0 1 0 0 q 1.RAW 14%
USER_NORTH_AMERICAN_WARNING_SUMMARY 0 0 0 1 0 0 0 1|.RAW 14%
USER_NORTH_POLE_CENTER 1 D | .RAW 14%
USER_NUDET_SITUATION_THEATER_MAP_A889 0 0 0 1 ¢ 1 |.RAW 1 14%
USER_OPCC_SYSTEM_STATUS_GRAPHIC q D o 0 0 1 VWRA 1 14%
USER_OPERATOR_FORMATTED_MAP_01 0 a a @ | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_02 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_03 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_04 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_05 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_06 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_07 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_08 0 a a [l | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_09 0 a a @ | D D I .RAW 1 14%
USER_OPERATOR_FORMATTED_MAP_10 0 a a @ | D D I .RAW 1 14%

99

Do

Do

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
USER_PACIFIC_CENTER 0 a a § .RA 1 14
USER_PACIFIC_ICADS_SITUATION_RELATED a a .RAW 1 14%
USER_PACIFIC_NUDET_SITUATION_RELATED 0 0 0 a a .RAW 1 14%
USER_PERIODS_OF_INTEREST_RELATED a (D o 0 1 AVR 1 14%
USER_PRELIM_RADAR_COMPOSITE_RELATED 0 0 q 1 q |. RAW 1 14%
USER_PREVIEW_MAP_01 0 0 0 0 1 a a I .RAW 1 14
USER_PREVIEW_MAP_02 0 0 0 0 1 a a I .RAW 1 14
USER_RADAR_SITUATION_MAP_OVERLAYS 0 0 0 0 1 0 0 1| RAW 1 14%
USER_RADAR_SITUATION_RELATED 0 0 0 0 1 0 0 1| .RA 1| 14%
USER_SCENARIO_EXECUTION_CONTROL_ID 0 0 1 q q . RAW 1 14%
USER_SENSOR_DETECTIONS_LEFT g d] D L .RAW L 14%
USER_SENSOR_DETECTIONS_RIGHT g d] D L .RAW L 14%
USER_SENSOR_MAINTENANCE_RELATED 0 0 1 0 g [t 1 WA 14%
USER_SHIP_SUB_LOCATIONS_RELATED 0 0 q 1 q D | WA 1 14%
USER_SINO_SOVIET_CENTER 0 0 0 a] [l] .RAW 1 14
USER_SINO_SOVIET_IR_SITUATION_OVERLAYS 0 0 0 0 1 [t 1 |.RAW 1 14%
USER_SINO_SOVIET_IR_SITUATION_PREFORMAT 0 a a [l | 0 .RAW 1 14%
USER_SO_ATLANTIC_ICADS_SIT_RELATED 0 0 0 1 0 a J.RAW 1 14%
USER_SO_ATLANTIC_NUDET_SIT_RELATEED 0 0 0 1 q q 1.RAW 1 14%
USER_SOUTH_ATLANTIC_CENTER 0 0 0 0 1 0 g 1 .RAW Y 4%
USER_STRATEGIC_MOB_SUMMARY_PREFORMAT 0 0 q 1 q D 1 |.RAW 1 14%
USER_STRATEGIC_MOB_SUMMARY_RELATED 0 0 0 1 0 a a . RAW 1 14%
USER_STRATEGIC_SUMMARY_PREFORMAT 0 0 0 1 a (1 AR 1 14%
USER_STRATEGIC_SUMMARY_RELATED 0 0 0 1 0 0 g 1 .RAW 1 14%
USER_SUMMARY_DAT_MENU 0 0 0 1 0 0 0 1| .RAV 1 149
USER_SYSTEM_MODE_CONTROL 0 0 0 1 g d 1 .ADB il 14
USER_SYSTEM_STATUS_MENU 0 0 1 0 q q q 1 RA il 14
USER_WORLD_CENTER 0 0 0 0 1 0 g 1 .RAW 1 14po
USER_WS02_SUITE_01 0 0 0 a] [l] .RAW 1 14
USER_WS02_SUITE_03 0 0 0 a] [l] .RAW 1 14
USER_WS02_SUITE_04 0 0 0 a] [l] .RAW 1 14
USER_WS02_SUITE_05 0 0 0 a] [l] .RAW 1 14
USER_WS02_SUITE_06 0 0 0 a] [l] .RAW 1 14
USER_WSO03_SUITE_03 0 0 0 a] [l] .RAW 1 14
USER_WSO03_SUITE_04 0 0 0 a] [l] .RAW 1 14
USER_WSO03_SUITE_05 0 0 0 a] [l] .RAW 1 14
USER_WS04_SUITE_02 0 0 0 a] [l] .RAW 1 14
USER_WS04_SUITE_03 0 0 0 a] [l] .RAW 1 14
USER_WS04_SUITE_04 0 0 0 a] [l] .RAW 1 14
USER_WS04_SUITE_05 0 0 0 a] [l] .RAW 1 14
USER_WS04_SUITE_06 0 0 0 a] [l] .RAW 1 14
USER_WS04_SUITE_O1 0 0 0 a] [l] .RAW 1 14
USER_WSO05_SUITE_02 0 0 0 a a]] .RAW 1 14
USER_WSO05_SUITE_03 0 0 0 a a]] .RAW 1 14
USER_WSO05_SUITE_04 0 0 0 a a]] .RAW 1 14
USER_WSO05_SUITE_05 0 0 0 a a]] .RAW 1 14
USER_WSO05_SUITE_06 0 0 0 a a]] .RAW 1 14

100

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
USER_WSO05_SUITE_51 0 0 0 a a]] .RAW 1 14
USER_WS06_SUITE_01 0 0 0 a a]] .RAW 1 14
USER_WS06_SUITE_02 0 0 0 a a]] .RAW 1 14
USER_WSO06_SUITE_03 0 0 0 a a]] .RAW 1 14
USER_WSO06_SUITE_04 0 0 0 a a]] .RAW 1 14
USER_WSO06_SUITE_05 0 0 0 a a]] .RAW 1 14
USER_WSO06_SUITE_06 0 0 0 a a]] .RAW 1 14
USER_WSO07_SUITE_01 0 0 0 a a]] .RAW 1 14
USER_WSO07_SUITE_02 0 0 0 a a]] .RAW 1 14
USER_WSO07_SUITE_03 0 0 0 a a]] .RAW 1 14
USER_WSO07_SUITE_06 0 0 0 a a]] .RAW 1 14
USER_WS08_SUITE_01 0 0 0 a a]] .RAW 1 14
USER_WS08_SUITE_02 0 0 0 a a]] .RAW 1 14
USER_WS08_SUITE_03 0 0 0 a a]] .RAW 1 14
USER_WS08_SUITE_04 0 0 0 a a]] .RAW 1 14
USER_WS08_SUITE_05 0 0 0 a a]] .RAW 1 14
USER_WS08_SUITE_06 0 0 0 a a]] .RAW 1 14
USER_WSC_AMWC_SECURITY_CLASS1_AREA 0 a a [l L D LRAW 14%
USER_WSC_AMWC_SECURITY_CLASS2_AREA 0 a a [l L D LRAW 14%
USER_WSO1_SUITE_02 0 0 0 a] [l] .RAW 1 14
USER_WSO1_SUITE_03 0 0 0 a] [l] .RAW 1 14
USER_WSO1_SUITE_04 0 0 0 a] [l] .RAW 1 14
USER_WSO1_SUITE_05 0 0 0 a] [l] .RAW 1 14
USER_WSO1_SUITE_06 0 0 0 a] [l] .RAW 1 14
USER_WSO10_SUITE_01 0 0 q q q | D | .RAW 14
USER_WSO10_SUITE_02 0 0 q q q | D | .RAW 14
USER_WSO10_SUITE_03 0 0 q q q | D | .RAW 14
USER_WSO10_SUITE_04 0 0 q q q | D | .RAW 14
USER_WSO10_SUITE_05 0 0 q q q | D | .RAW 14
USER_WSO10_SUITE_06 0 0 q q q | D | .RAW 14
USER_WSO7_SUITE_04 0 0 0 a a]] .RAW 1 14
USER_WSO7_SUITE_05 0 0 0 a a]] .RAW 1 14
USER_WSO09_SUITE_01 0 0 0 a a]] .RAW 1 14
USER_WSO9_SUITE_02 0 0 0 a a]] .RAW 1 14
USER_WSO9_SUITE_03 0 0 0 a a]] .RAW 1 14
USER_WSO9_SUITE_04 0 0 0 a a]] .RAW 1 14
USER_WSO9_SUITE_05 0 0 0 a a]] .RAW 1 14
USER_WSO9_SUITE_06 0 0 0 a a]] .RAW 1 14
USER_WSOII_SUITE_01 0 0 0 0 0 1 a I .RAW 1 14
USER_WSOII_SUITE_02 0 0 0 0 0 1 a I .RAW 1 14
USER_WSOII_SUITE_03 0 0 0 0 0 1 a I .RAW 1 14
USER_WSOII_SUITE_04 0 0 0 0 0 1 a I .RAW 1 14
USER_WSOII_SUITE_05 0 0 0 0 0 1 a I .RAW 1 14
USER_WSOII_SUITE_06 0 0 0 0 0 1 a I .RAW 1 14
USI_CREATE_MENU_DISPLAY 0 0 0 0 1 0 0 1| .ADH 1 144
USI_MENU_DEFINITION 0 0 0 0 1 0 0 1| .ADB 1 149
USI_MENU_PROCESSING 0 0 0 0 1 q q 1 .ADB 1 14

101

Module 94-2 |1 95-1 | 952 | 96-1 | 96-2 | 97-1 | AOC [Grand [Module | Release [Release
2A | Total |Type Count | Percent
USI_PROCEDURES_ 0 0 0 0 1 0 0 1] .ADS 1 149
VIM_INPUT_FILE 0 0 0 0 1 0 0 1| .DAT 1 149
VMSP_COMMAND 0 0 0 0 1 0 0 1] .COM 1 149
VMSP_LOGIN 0 0 0 0 1 0 0 1] .COM 1 149
VRP_TWAA_SYSUAF_QUOTAS 0 0 0 1 0 0 1{ .DA1 1 14
VRP_WSC_SYSUAF_QUOTAS 0 0 0 0 il d 1 .DA[r 1 14%
VUESMASTER 0 0 0 0 1 0 0 1| .DAT 1 149
VUE$PROFILE.VUE$ 0 0 0 0 1 0 0 1| .DAT 1 149

b. CCPDS-R Change Driver Tabulation

Change Object 95-2 | 96-1 | 96-2 [97-1 [Grand Total | Release Count Release Exposure Exposure

Per cent Per cent
display 7 6 14 1 28 4 100% 112 37%
message 1 2 20 3 26 4 100% 104 35%
menu 0 9 1 0 10 2 50% 20 7%
alert 0 2 4 0 6 2 50% 12 4%
rules 1 0 4 0 5 2 50% 10 3%
data 1 0 0 2 3 2 50% 6 2%
time 1 0 1 0 2 2 50% 4 1%
report 0 0 4 0 4 1 25% 4 1%
command 0 3 0 0 3 1 25% 3 1%
COTS 0 0 3 0 3 1 25% 3 1%
status 0 0 3 0 3 1 25% 3 1%
timer 0 0 3 0 3 1 25% 3 1%
alarm 2 0 0 0 2 1 25% 2 1%
satellite 0 0 2 0 2 1 25% 2 1%
count 1 0 0 0 1 1 25% 1 0%
error 1 0 0 0 1 1 25% 1 0%
failover 0 1 0 0 1 1 25% 1 0%
form 0 0 0 1 1 1 25% 1 0%
keyboard 1 0 0 0 1 1 25% 1 0%
message field 0 1 0 0 1 1 25% 1 0%
message filter 0 1 0 0 1 1 25% 1 0%
scenario 1 0 0 0 1 1 25% 1 0%
summary 0 0 1 0 1 1 25% 1 0%
table 0 0 1 0 1 1 25% 1 0%
thresholding 1 0 0 0 1 1 25% 1 0%
track 0 0 0 1 1 1 25% 1 0%
Grand Total 18 25 61 8 112

102

Appendix 3

Volatility Characterization - Granite Sentry

103

a. Granite Sentry M odule Tabulation

Module 95-2 | 96-1 [96-2 [Grand | Module | Release Release
Total Type Count Per cent
AIR_PUSH_CALLBACKS 3 1 0 4 .ADB 2 67%
MESSAGE_C167 2 2 0 4 .ADB 2 67%
MESSAGE_C17R 2 2 0 4 .FRM 2 67%
C170_TRACK_REPORT 1 2 0 3 .ADB 2 67%
FORM_ECTAR_REPORT 2 1 0 3 .UIL 2 67%
MESSAGE_K169 1 2 0 3 .FRM 2 67%
AIR_LIB 1 1 0 2 .ADB 2 67%
AUTOMATIC_MESSAGE_GENERATION 1 1 0 2 .ADB 2 67%
FIGHTER_STATUS_PKG 1 1 0 2 .ADB 2 67%
FORM_ECTAR_REPORT_PKG 1 1 0 2 .ADB 2 67%
FORMAT_N1X 1 1 0 2 .ADB 2 67%
IR_MISSILE_KIND_TC 1 0 1 2 ADB 2 67%
IR_MISSILE_KIND_TC_ 1 0 1 2 .ADS 2 67%
MESSAGE_C169 1 1 0 2 .FRM 2 67%
MESSAGE_CALLS 1 1 0 2 .ADB 2 67%
N016_TRACK_REPORT 1 1 0 2 .ADB 2 67%
OLD_USER_PROFILE_DATA_STRUC_ 1 1 0 2 .ADS 2 67%
OPLAN_DB_TRANSACTIONS 1 1 2 .ADB 2 67%
USER_PROFILE_DEFAULTS 1 1 0 2 .DAT 2 67%
WD_IR_LAUNCH_EST .ADB 67%
WD_IR_LAUNCH_EST_ .ADS 67%
AIR_BUILD_ROCC_SOCC_SUMMARY_PULL_RIGHT 3 0 0 3 .ADB| 1 33%
CHECK_AIR_DIALOG_BOXES 3 0 0 3 .ADB 1 33%
COMMON_RESET_PKG 3 0 0 3 .ADB 1 33%
GS_MSG_COMMON_TYPES_ 0 .ADS 1 33%
GSW_AIR_MENU_TYPES_ 3 0 0 3 .ADS 1 33%
GSW_AIR_WIDGETS_ .ADS 1 33%
MESSAGE_NO016 0 3 0 .ADB 1 33%
AIR_BUILD_REQUEST_TABLES_MENU 2 0 0 2 .ADB 1 33%
AIR_BUILD_ROTHR_M_SUMMARY_DIALOG_BOXES 2 0 0 2 .ADB 33%
AIR_BUILD_ROTHR_T_SUMMARY_DIALOG_BOXES 2 0 0 2 .ADB 33%
AIR_BUILD_ROTHR_V_SUMMARY_DIALOG_BOXES 2 0 0 2 .ADB 33%
AIR_PUSH_CALLBACKS_ 2 0 0 2 .ADS 1 33%
AIRBASE_LOOKUP_TABLE_PKG_ 2 0 0 2 .ADS 1 33%
BUILD_OTHB_TRACK_MESSAGE 0 2 0 2 .ADB 1 33%
BUILD_REGION_SECTOR_TRACK_SUMMARY_TABLE 2 0 0 2 AB 1 33%
BUILD_TRACK_MESSAGE 0 2 0 2 .ADB 1 33%
CREATE_RADAR_OUTLINES 2 0 0 2 .ADB 1 33%
ELEMENT_TAB_PKG 0 2 0 2 .ADB 1 33%
FORM_AIRBASE_LIST .UIL 1 33%
FORM_COMMAND_CONTROL_ID 2 0 0 2 .UIL 1 33%
FORM_RADAR_SITE_STATUS 0 .UIL 1 33%
GEN_CHANNEL_STATUS_UPDATE .ADB 1 33%

104

Module 95-2 | 96-1 [96-2 [Grand | Module | Release Release
Total Type Count Per cent
GET_CHANGE_REQUEST 0 2 0 2 .ADB| 1 33%
GET_INIT_REQUEST .ADB 1 33%
GSW_DISPLAYS .ADS 1 33%
GSW_SET_AIR_REQ_TABLE_DEFAULTS 2 0 0 2 .ADB 1 33%
MESSAGE_C170 0 2 0 2 .ADB 1 33%
PRINT_REGION_SECTOR_TRACK_SUMMARY .ADB 1 %3
PROJECTION_CONSTANTS_ 0 0 2 .ADS 33%
ROTHR_MONTANA_AIR_TOGGLE_CALLBACKS 2 0 0 2 .ADB 1 B
ROTHR_MONTANA_AIR_TOGGLE_CALLBACKS_ 2 0 0 2 .ADS 1 33%
ROTHR_TEXAS_AIR_TOGGLE_CALLBACKS 2 0 0 2 .ADB 1 33%
ROTHR_TEXAS_AIR_TOGGLE_CALLBACKS_ 2 0 0 2 .ADS 1 %3
ROTHR_VIRGINIA_AIR_TOGGLE_CALLBACKS 2 0 0 2 .ADB 1 33%
ROTHR_VIRGINIA_AIR_TOGGLE_CALLBACKS_ 2 0 0 2 .ADS 1 33%
SOCC_BOUNDARIES 2 0 0 2 .GEO 1 33%
TRACK_SUMMARY_PKG 2 0 0 2 .ADB 1 33%
WD_POLYGON_BOUNDARY 2 0 0 2 .ADB 1 33%
ADIZ 1 0 0 1 .GEO 1 33%
AIR_DEFENSE_DB_DEFINITION 0 1 0 1 .ADB 1 33%
AIR_MAP_PKG 1 0 0 1 .ADB 1 33%
AIR_MAP_PKG_ 1 0 1 .ADS 1 33%
AIRBASE_FIGHTER_STATUS_PKG 0 1 0 1 .ADB| 1 33%
AIRBASE_PKG 1 0 0 1 .ADB 1 33%
AIRCRAFT_MOVEMENT_PKG 0 1 0 1 .ADB 1 33%
ALARM_DEFINITIONS_ 0 1 0 1 .ADS 1 33%
ALARM_DISPLAY_CONTROL_PKG 0 1 0 1 .ADB 1 33%
AM_EMR_SEC_SCREEN 1 0 0 1 .FRM 1 33%
AWS_GRAPHIC_PKG_ 0 1 0 1 .ADS 1 33%
AWS_HEADER_PKG 1 0 0 1 .ADB 1 33%
BEE_SUBSURFACE 0 1 0 1 .GKSM 1 33%
BEE_SURFACE 0 1 0 1 .GKSM 1 33%
BLUE_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%
BLUE_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 1 33%
BUILD_DEFCON_CHANGE_TABLE 0 .ADB 1 33%
BUILD_EMR_REPORT 1 0 0 1 .ADB 1 33%
BUILD_FIGHTER_STATUS 1 0 0 1 .ADB 1 33%
BUILD_HEADER_SEG_2 1 .ADB 1 33%
BUILD_ICON_DISPLAY .ADB 33%
BUILD_MTR_REPORT .ADB 33%
BUILD_NORAD_ROCC_SOCC_STATUS_TABLE 1 0 0 1 .ADB 1 3%
BUILD_SUB_SHIP_ICONS 0 1 0 1 .ADB 1 33%
BUILD_TAB_MESSAGE 1 0 0 1 .ADB 1 33%
C001_WEATHER_REPORT 1 0 0 1 .ADB 1 33%
C167_INTERCEPTOR_STATUS_REPORT 0 0 .AD 1 339
C169_ECTAR_REPORT 1 0 0 1 .ADB 1 33%
C171_RADAR_SITE_STATUS 1 0 0 1 .ADB| 1 33%
C172_E3A_STATUS_REPORT 1 0 1 .ADH 1 33%

105

Module 95-2 | 96-1 [96-2 [Grand | Module | Release Release
Total Type Count Per cent
CANADA_BOUNDS 1 0 0 1 .GKSM 1 33%
CANADA_EAST_BOUNDS 1 0 0 1 .GKSM 1 33%
CHANGE_DATA PUSH_CB 0 1 0 1 .ADB 1 33%
CHARACTER_UTILITIES_PKG 1 0 0 1 .ADB 1 33%
CHARACTER_UTILITIES_PKG_ 1 0 0 1 .ADS 1 33%
CHECK_ICON_TEXT 1 0 0 1 .ADB 1 33%
CLIPPING_PKG 1 0 0 1 .ADB 1 33%
CLIPPING_PKG_ 1 0 0 1 .ADS 1 33%
CONUS_BOUNDS 1 0 0 1 .GKSM 1 33%
CONV_RADAR 0 1 0 1 .ADB 1 33%
CONVERT_TRACK_DATA _TO_STRING 0 0 1 .ADB 33%
CREATE_EXERCISE_HEADER_2 1 0 0 1 .ADB 1 33%
CREATE_HEADER_2 1 0 0 1 .ADB 1 33%
CREATE_MAP_BACKGROUNDS 1 0 0 1 .ADB 1 33%
CREATE_SUB_SHIP_ECM_ICONS 0 1 0 1 .ADH 1 33%
CREATE_SUB_SHIP_SPAWNING_ICONS 0 1 0 1 .ADH 1 33%
CREATE_SUB_SHIP_SPLASHED_ICONS 0 1 0 1 .ADB 1 33%)|
CREATE_SUBSURFACE_ICONS 0 1 0 1 .ADB 1 33%
CREATE_SURFACE_ICONS 0 1 0 1 .ADB 1 33%
DATA_REDUCTION_COMMON_TYPES_ 1 0 0 1 .ADS 1 33%
DEAD_RECKON 1 .ADB 1 33%
DEFCON_CHANGE_PKG 1 0 0 1 .ADB 1 33%
DEFCON_CHANGE_PKG_ 1 0 0 1 .ADS| 1 33%
DELETE_ITEM 1 0 0 1 .ADB 1 33%
DISPLAY_LIST_PKG_ 1 0 0 1 .ADS 1 33%
E_3_RP_STATUS_PKG 1 0 0 1 .ADB 1 33%
E_3_RP_STATUS_PKG_ 1 0 0 1 .ADS 1 33%
ELEMENT_TAB_PKG_ 0 1 0 1 .ADS 1 33%
EXERCISE_HEADER_2 1 0 0 1 .GKSM 1 33%
FAKELT_SURFACE 0 1 0 1 .GKSM 33%
FAKER_SUBSURFACE 0 1 0 1 .GKSM 33%
FORM_AIRBASE_FIGHTER_OVERALL_PKG_ 1 0 0 1 .ADS] 1 %3
FORM_AIRBASE_FIGHTER_TYPE 0 1 0 1 .UIL 1 33%
FORM_AIRBASE_FIGHTER_TYPE_PKG_ 1 0 0 1 .ADS 1 33%
FORM_AIRBASE_SELECTION_1 1 0 0 1 .UIL 1 33%
FORM_AIRBASE_SELECTION_2 1 0 0 1 .UIL 1 33%
FORM_AIRBASE_SELECTION_3 1 0 0 1 .UIL 1 33%
FORM_AIRBASE_WEATHER_PKG_ 1 0 0 1 .ADS| 1 33%
FORM_AWACS_STATUS 1 0 0 1 .UIL 1 33%
FORM_AWACS_STATUS_PKG 1 0 0 1 .ADB 1 33%
FORM_AWACS_STATUS_PKG_ 1 0 0 1 .ADS] 1 33%
FORM_COMMAND_CONTROL_ID_PKG 1 0 0 1 .ADB 1 33%
FORM_COMMAND_CONTROL_ID_PKG_ 1 0 0 1 .ADS 1 33%
FORM_ECSUM_REPORT 1 0 0 1 .UIL 1 33%
FORM_ECSUM_REPORT_PKG 1 0 0 1 .ADH 1 33%
FORM_ECSUM_REPORT_PKG_ 1 1 .ADS 1 33%)

106

Module 95-2 | 96-1 [96-2 [Grand | Module | Release Release
Total Type Count Per cent
FORM_ECTAR_REPORT_PKG_ 1 0 0 1 .ADY 1 33%
FORM_ECTAR_REPORT_RESET_PROC 1 0 0 1 .ADB 1 339
FORM_FUNCTION_STATUS 1 0 0 1 .UIL 1 33%
FORM_FUNCTION_STATUS_PKG 1 0 0 1 .ADB 1 33%
FORM_FUNCTION_STATUS_PKG_ 1 0 0 1 .ADS 1 33%
FORM_RADAR_SITE_STATUS_PKG 1 0 0 1 .ADB 1 33%
FORM_RADAR_SITE_STATUS_PKG_ 1 0 0 1 .ADS 1 33%
FORM_REGION_FIGHTER_OVERALL 1 0 0 1 .UIL 1 33%
FORM_REGION_FIGHTER_OVERALL_PKG 1 0 0 1 .ADB 1 33%
FORM_REGION_FIGHTER_OVERALL_PKG_ 1 0 0 1 .ADS 1 33%
FORM_REGION_SECTOR_ACE_C2_ID 1 0 0 1 .uiy 1 33%
FORM_REGION_SECTOR_ACE_C2_ID_PKG 1 0 0 1 .ADB 1 33%
FORM_REGION_SECTOR_RADAR 1 0 0 1 .UIL 1 33%
FORM_REGION_SECTOR_RADAR_PKG 1 0 0 1 .ADH 1 33%
FORM_REGION_SECTOR_RADAR_PKG_ 1 0 0 1 .ADY 1 33%
FORM_REGION_SECTOR_STATUS 1 0 0 1 .UIL 1 33%
FORM_REGION_SECTOR_STATUS_PKG 1 0 0 1 .ADB 1 33%
FORM_REGION_SECTOR_STATUS_PKG_ 1 0 0 1 AD§ 1 339
FORM_REGION_SELECTION_1 1 0 0 .UIL 33%
FORM_REGION_SELECTION_2 1 0 0 .UIL 33%
FORM_REGION_SELECTION_3 1 0 0 1 .UIL 1 33%
FORM_ROCC_SOCC_EMER_ACTIONS 1 0 0 1 Uil 1 33%
FORM_SCRAMBLE_ORDER_PKG_ 1 0 0 1 .ADS 1 33%
FORM_STATUS_REPORT_E3A 1 0 0 1 .UIL 1 33%
FORM_STATUS_REPORT_E3A_PKG 1 0 0 1 .ADH 1 33%
FORM_TRACK_REPORT 0 1 0 1 .UIL 1 33%
FORM_TRACK_REPORT_PKG 1 0 1 .ADB 1 33%
FORM_TRACK_REPORT_PKG_ 1 0 1 .ADS 1 33%
FORMAT_MESSAGE_DATA 1 0 .ADB 1 33%
FRIENDLY_SUBSURFACE 0 1 .GKSM 33%
FRIENDLY_SURFACE 0 1 0 1 .GKSM 33%
GET_A_C170 0 1 0 1 .ADB 33%
GKS_SETUP 0 1 0 1 .ADB 1 33%
GKS_STOP 0 1 0 1 .ADB 33%
GREEN_SUB_SHIP_ECM 0 1 0 1 .GKSM 33%
GREEN_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 33%
GS_ALARM_PKG_ 0 1 0 1 .ADS 1 33%
GS_CSSO 1 0 0 1 .UIL 1 33%
GS_CSSO_PKG_ 1 0 0 1 .ADS 1 33%
GS_MSG_FMTS_ 0 1 0 1 .ADS 1 33%
GSW_EVENT_HANDLER 0 1 0 1 .ADB 1 33%
HEADER_1 1 0 0 1 .GKSM 1 33%
HEADER_2 1 0 0 1 .GKSM 1 33%
HOSTILE_SUBSURFACE 0 1 0 1 .GKSM 33%
HOSTILE_SURFACE 0 1 0 1 .GKSM 33%
ICON 0 1 0 1 .GKSM 33%

107

Module 95-2 | 96-1 [96-2 [Grand | Module | Release Release
Total Type Count Per cent
INITIALIZE_GLOBAL 1 0 0 1 .ADB 1 33%
INTELLIGENCE_SUBSURFACE .GKSM 33%
INTELLIGENCE_SURFACE 0 1 0 1 .GKSM 33%
IR_LAUNCH_AREA_TC_ 1 0 0 1 .ADS 1 33%
LAT_LONS 1 0 0 1 .GEO 1 33%
LOAD_DISPLAY_LIST 1 0 0 1 .ADB 1 33%
LOAD_ECM_ICONS 0 1 0 1 .ADB 1 33%
LOAD_SPAWNING_ICONS 0 1 0 1 .ADB 1 33%
LOAD_SYMBOLS 0 1 0 1 .ADB 1 33%
MES5AGE_C169 0 1 0 1 .FRM 1 33%
MESSAGE_C162 1 0 0 1 .FRM 1 33%
MESSAGE_C171 1 0 0 1 .FRM 1 33%
MESSAGE_K162 1 0 0 1 .FRM 1 33%
MESSAGE_NO008 1 0 0 1 .FRM 1 33%
MESSAGE_NO030 0 1 0 1 .FRM 1 33%
MESSAGE_TO_TEXT_CONVERSIONS_ 1 0 0 1 .ADS 1 33%)
MICROWAVE_SENSORS 0 1 0 1 .DAT 1 33%
MOVE_A_TRACK 1 .ADB 33%
N014_AWACS_STATUS .ADB 33%
NORAD_ROCC_SOCC__STATUS__ PKG_ 1 0 0 1 .ADB 1 339
NORTH_AMERICA_BOUNDS 1 0 0 1 .GKSM 1 33%
NORTH_EAST .GKSM 33%
NORTH_EAST_ADIZ .GKSM 33%
NORTH_EAST_BOUNDS 1 .GKSM 33%
NORTH_WEST_BOUNDS 0 1 .GKSM 1 33%
OPLAN_DB_TRANSACTIONS 0 .ADS 33%
OTH_EAST_1_BOUNDS 1 0 0 1 .GKSM 1 33%
OTH_EAST_2_BOUNDS 1 0 0 1 .GKSM 1 33%
OTH_EAST_3_BOUNDS 1 0 0 1 .GKSM 1 33%
OTH_WEST_4_BOUNDS 1 0 0 1 .GKSM 1 33%
OTH_WEST_5_BOUNDS 1 0 0 1 .GKSM 1 33%
OTH_WEST_6_BOUNDS 1 0 0 1 .GKSM 1 33%
PENDING_SUBSURFACE 0 1 0 1 .GKSM 33%
PENDING_SURFACE 0 1 0 1 .GKSM 33%
POLAR_PROJECTION_BOUNDS 1 0 0 1 .GKSM 1 33%
PRINT_DEFCON_CHANGE 1 0 0 1 .ADB 1 33%
PRINT_MESSAGE_REPORT 0 1 0 1 .ADB 1 33%
PRINT_NORAD_ROCC_SOCC_STATUS 1 0 0 1 .ADH 1 33%)
PROCESS_ROCC_SOCC 1 0 0 1 .ADB 1 33%
PROCESS_SYSTEM_STATUS_ALARM 0 1 0 1 .ADH 1 33%
PROCESS_TRACK_MESSAGE 1 1 .ADH 1 33%
PUSH_CALLBACKS 0 1 0 1 .ADB 1 33%
RADAR_OUTLINES 1 0 0 1 .GKSM 1 33%
RADAR_PKG 1 0 0 1 .ADB 1 33%
RADARS 0 1 0 1 .IN 1 33%
RED_SUB_SHIP_ECM 0 1 0 1 .GKSM 1 33%

108

Module 95-2 | 96-1 | 96-2 | Grand | Module | Release Release
Total Type Count Per cent
RED_SUB_SHIP_SPAWNING 0 1 0 1 .GKSN\ 1 33%
ROCC_SOCC_PKG 1 0 0 1 .ADB 1 33%
SHOW_A_SHIP_SUB 0 1 0 1 .ADB 1 33%
SHOW_DISPLAY 1 0 0 1 .ADB 1 33%
SHOW_ROCC_SOCC 1 0 0 1 .ADB 1 33%
SOUTH_EAST 1 0 0 1 .GKSM 1 33%
SOUTH_EAST_ADIZ 1 0 0 1 .GKSM 1 33%
SOUTH_EAST_BOUNDS 1 0 0 1 .GKSM 1 33%
SOUTH_WEST_BOUNDS 1 0 0 1 .GKSM 1 33%
SPECIAL_SUBSURFACE 0 1 0 1 .GKSM 33%
SPECIAL_SURFACE .GKSM 33%
STRING_UTILITIES_PKG 1 1 .ADB 1 33%
STRING_UTILITIES_PKG_ .ADS 1 33%
SUBSURFACE_SPLASHED 0 1 0 1 .GKSW 33%
SURFACE_SPLASHED 0 1 0 1 .GKSM 33%
TDA_ARRAY_SPEC_ 0 1 0 1 .ADS 1 33%
TDA_LOOKUP_PKG 0 1 0 1 .ADB 1 33%
TRACK_CHANGE 0 1 0 1 .FRM 1 33%
TRACK_INITIALIZATION 0 1 0 1 .FRM 1 33%
TRACK_STRING_CONV_PKG 1 0 0 1 .ADB 1 33%
TRACR_PKG 0 1 0 1 .ADB 1 33%
UNKNOWN_SUBSURFACE 0 1 0 1 .GKSM 33%
UNKNOWN_SURFACE 0 1 0 1 .GKSM 33%
USER_PROFILE_DATA_STRUC_ 1 0 0 1 .ADS 1 33%
WD_TARGETS 1 0 0 1 .ADB 1 33%
WESTERN_HEMISPHERE_BOUNDS 1 0 0 1 .GKSM 1 33%
WHITE_SUB_SHIP_ECM 0 1 0 1 .GKSM 33%
WHITE_SUB_SHIP_SPAWNING 0 1 0 1 .GKSM 33%
WORLD_05 .GEO 1 33%
WORLD_BOUNDS 1 .GKSM 1 33%
YELLOW_SUB_SHIP_ECM 0 1 1 .GKSM 33%
YELLOW_SUB_SHIP_SPAWNING 1 1 .GKSM 33%
b. Granite Sentry Change Driver Tabulation
Change Object 95-2 | 96-1 | 96-2 [Grand Total | Release Count Release Exposure Exposure
Per cent Per cent
display 3 3 1 7 3 100% 21 64%
DIM 1 0 1 2 2 67% 4 12%
message 0 3 0 3 1 33% 3 9%
alarm 0 2 0 2 1 33% 2 6%
site 0 1 0 1 1 33% 1 3%
threat 1 0 0 1 1 33% 1 3%
weapon 0 1 0 1 1 33% 1 3%

109

Change Object

95-2

96-1

96-2

Grand Total

Release Count

Release
Per cent

Exposure

Exposure
Per cent

Grand Total

10

17

110

Bibliography

[1] , “COCOMO 2.0 Model User's Manual,” University otihern
California 1996.

[2] , “Domain Engineering Guidebook,” Space and Warningi®@gsCenter,
<http://lwww.asset.com/stars/loral/domain/guide/homet2® June 1995.

[3] , “REVIC User's Manual,” U.S. Air Force Cost @eni991.

[4] AFOTEC, Software Maintainability - Evaluation Guideol. 3. Kirtland AFB,
NM: HQ Air Force Operational Test and Evaluation Cent891.

[5] L. Baekgaard, “Designing Adaptable Software - Paranzetéon of Volatile
Properties,” presented at Conference on Software btance, San Diego, CA,
1990.

[6] L. A. Belady and M. M. Lehman, “A model of large pragr development,|BM
Systems Journavol. 15, no. 3, pp. 225-252, 1976.

[7] K. Bennett, “Re: Software Volatility,” Personabrrespondence, 1996.
[8] B. W. Boehm Software Engineering Economid2rentice Hall, 1981.

[9] B. W. Boehm, “Software Risk Management: Princides Practices,/EEE
Software vol. 8, no. 1, pp. 32-41, 1991.

[10] T.P.Bowen, G. B. Wigle, and J. T. Tsal, “Speaifion of Software Quality
Attributes - Software Quality Specification Guidebook . Mdll.,” Rome Air
Development Center, Griffiss AFB, NY, February 1985.

[11] E. Dean, “Parametric Cost Analysis,” <http://alka@.nasa.gov/dfc/pca.html>,
April 1995.

[12] S. Dekleva and N. Zvegintzov, “Real maintenancgssias,” in Software
Maintenance Newsol. 9, no. 2, 1991, pp. 6-9.

[13] D. Ferens, “Review of Software Cost Estimatian,Software Methodology
Handbook G. Novak-Ley and S. Stukes, Eds.: Space Systems Cabfsisn
Group, Software Subgroup, 1995, pp. 2-1 - 2-54.

[14] J. L. Floyd and P. C. Gould, “Software Volatility &gsis - A Historical Approach
to Future Software Maintenance,” presented at The Aiftiual Software
Technology Conference, Salt Lake City, 1993.

111

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

J. Goguen, “Parameterized Programming,” Center Stindy of Language and
Information, Stanford, CA CSLI-84-10, Aug. 1984.

J. A. Hager, “Developing maintainable systems: Alifelcycle approach,”
presented at Conference on Software Maintenance, 1989.

J. A. Hager, “Software Cost Reduction Methods ircra: A Post-Mortem
Analysis.,” The Journal of Systems and Softwamd. 14, no. 2, pp. 67-79, 1991.

B. Holchin, “Software Maintenance Survey,"Software Methodology Handbqok
G. Novak-Ley and S. Stukes, Eds.: Space Systems Cosftsi&n@roup, Software
Subgroup, 1995, pp. 5-1 - 5-13.

J. M. Hops and J. S. Sherif, “Development and Applicadf Composite
Complexity Models and a Relative Complexity Metric iB@aftware Maintenance
Environment, The Journal of Systems and Softwama. 31, no. 2, p. 157, 1995.

B. M. Horowitz, “The Importance of Software Artdcture,” The MITRE
Corporation, Bedford, MA June 1991.

F. Land, “Adapting to Changing User Requiremenitsiérmation &
Managementno. 5, pp. 59-75, 1982.

B. Lientz, E. Swanson, and G. Tompkins, “Charastied of Application Software
Maintenance,’'Communications of the ACMol. 21, no. 6, pp. 466-471, 1978.

J. Martin and C. McClure&Software Maintenance: The Problem And Its Solutions
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

D. Parnas, “Designing for Ease of Extension andt@etion,” [EEE Transactions
on Software Engineeringol. SE-5, no. 2, pp. 129-137, 1979.

Paul the Apostle, “First Letter to the Corinthigng3:1-8.

D. E. Peercy, “Software Logistics National WorkglicdSociety of Logistics
Engineers, McLean, VA 15-16 Aug. 1989.

D. N. Podger, “High Level Languages - A Basis for iegdtive Systems
Design,” inDesign and Implementation of Computer-Based InftionaSystems
N. Szyperski and E. Groschla, Eds.: Sijthoff & Noordhd&79.

J. Ruhl, “Why a computer system is not like a batfitGoftware Maintenance
News vol. 6, no. 12, p. 12, 1988.

E. Swanson, “The Dimensions of Maintenance,” @nésd at 2nd International
Conference on Software Engineering, San Francisco, 1976.

112

[30] E. C. Van Horn, “Software Must Evolve,” $oftware Engineeringvol. 1, H.
Freeman and P. M. Lewis, Eds.: Academic Press, 1980, pp. 209-226.

113

